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Caution: This is a test version for the alpaka readthedocs documentation. The correct documentation can
found here: https://alpaka.readthedocs.io/en/latest/index.html

alpaka - An Abstraction Library for Parallel Kernel Acceleration

The alpaka library is a header-only C++14 abstraction library for accelerator development. Its aim is to provide
performance portability across accelerators through the abstraction (not hiding!) of the underlying levels of paral-
lelism.

Caution: The readthedocs pages are work in progress and contain outdated sections.

Generally, follow the manual pages in-order to get started. Individual chapters are based on the information of
the chapters before.

Note: Are you looking for our latest Doxygen docs for the API?

• See https://alpaka-group.github.io/alpaka/

BASIC 1
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2 BASIC



CHAPTER

ONE

INTRODUCTION

The alpaka library defines and implements an abstract interface for the hierarchical redundant parallelism model.
This model exploits task- and data-parallelism as well as memory hierarchies at all levels of current multi-core
architectures. This allows to achieve performance portability across various types of accelerators by ignoring spe-
cific unsupported levels and utilizing only the ones supported on a specific accelerator. All hardware types (multi-
and many-core CPUs, GPUs and other accelerators) are treated and can be programmed in the same way. The
alpaka library provides back-ends for CUDA, OpenMP, HIP and other methods. The policy-based C++ template
interface provided allows for straightforward user-defined extension of the library to support other accelerators.

The library name alpaka is an acronym standing for Abstraction Library for Parallel Kernel Acceleration.

1.1 About alpaka

1.1.1 alpaka is . . .

Abstract
It describes parallel execution on multiple hierarchy levels. It allows to implement a mapping to various
hardware architectures but is no optimal mapping itself.

Sustainable
alpaka decouples the application from the availability of different accelerator frameworks in different ver-
sions, such as OpenMP, CUDA, HIP, etc. (50% on the way to reach full performance portability).

Heterogeneous
An identical algorithm / kernel can be executed on heterogeneous parallel systems by selecting the target
device. This allows the best performance for each algorithm and/or a good utilization of the system without
major code changes.

Maintainable
alpaka allows to provide a single version of the algorithm / kernel that can be used by all back-ends. There
is no need for “copy and paste” kernels with different API calls for different accelerators. All the accelerator
dependent implementation details are hidden within the alpaka library.

Testable
Due to the easy back-end switch, no special hardware is required for testing the kernels. Even if the simu-
lation itself always uses the CUDA back-end, the tests can completely run on a CPU. As long as the alpaka
library is thoroughly tested for compatibility between the acceleration back-ends, the user simulation code is
guaranteed to generate identical results (ignoring rounding errors / non-determinism) and is portable without
any changes.

Optimizable
Everything in alpaka can be replaced by user code to optimize for special use-cases.

Extensible
Every concept described by the alpaka abstraction can be implemented by users. Therefore it is possible to
non-intrusively define new devices, queues, buffer types or even whole accelerator back-ends.

3
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Data Structure Agnostic
The user can use and define arbitrary data structures.

1.1.2 alpaka does not . . .

Automatically provide an optimal mapping of kernels to various acceleration platforms
Except in trivial examples an optimal execution always depends on suitable selected data structures. An
adaptive selection of data structures is a separate topic that has to be implemented in a distinct library.

Automatically optimize concurrent data access
alpaka does not provide feature to create optimized memory layouts.

Handle differences in arithmetic operations
For example, due to different rounding or different implementations of floating point operations, results
can differ slightly between accelerators.

Guarantee determinism of results
Due to the freedom of the library to reorder or repartition the threads within the tasks it is not possible or
even desired to preserve deterministic results. For example, the non-associativity of floating point operations
give non-deterministic results within and across accelerators.

The alpaka library is aimed at parallelization on shared memory, i.e. within nodes of a cluster. It does not compete
with libraries for distribution of processes across nodes and communication among those. For these purposes
libraries like MPI (Message Passing Interface) or others should be used. MPI is situated one layer higher and can
be combined with alpaka to facilitate the hardware of a whole heterogeneous cluster. The alpaka library can be
used for parallelization within nodes, MPI for parallelization across nodes.

4 Chapter 1. Introduction



CHAPTER

TWO

INSTALLATION

# Clone alpaka from github.com
git clone --branch 0.9.0 https://github.com/alpaka-group/alpaka.git
cd alpaka
mkdir build && cd build
cmake -DCMAKE_INSTALL_PREFIX=/install/ ..
cmake --install .

2.1 Tests and Examples

Build and run examples:

# ..
cmake -Dalpaka_BUILD_EXAMPLES=ON ..
cmake --build . -t vectorAdd
./example/vectorAdd/vectorAdd # execution

Build and run tests:

# ..
cmake -DBUILD_TESTING=ON ..
cmake --build .
ctest

Enable accelerators:

Alpaka uses different accelerators to execute kernels on different processors. To use a specific accelerator in alpaka,
two steps are required.

1. Enable the accelerator during the CMake configuration time of the project.

2. Select a specific accelerator in the source code.

By default, no accelerator is enabled because some combinations of compilers and accelerators do not work,
see the table of supported compilers. To enable an accelerator, you must set a CMake flag via cmake ..
-Dalpaka_ACC_<acc>_ENABLE=ON when you create a new build. The following example shows how to enable
the CUDA accelerator and build an alpaka project:

# create build folder
mkdir build && cd build
# run cmake configure with enable CUDA backend
cmake -Dalpaka_ACC_GPU_CUDA_ENABLE=ON ..
# compile source code
cmake --build .

5
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In the overview of cmake arguments you will find all CMake flags for activating the different accelerators. How to
select an accelerator in the source code is described on the example page.

Warning: If an accelerator is selected in the source code that is not activated during CMake configuration
time, a compiler error occurs.

Hint: When the test or examples are activated, the alpaka build system automatically activates the serial
backend, as it is needed for many tests. Therefore, the tests are run with the serial backend by default. If
you want to test another backend, you have to activate it at CMake configuration time, for example the HIP back-
end: cmake .. -DBUILD_TESTING=ON -Dalpaka_ACC_GPU_HIP_ENABLE=ON. The alpaka tests use a selector
algorithm to choose a specific accelerator for the test cases. The selector works with accelerator priorities. There-
fore, it is recommended to enable only one accelerator for a build to make sure that the right one is used.

6 Chapter 2. Installation



CHAPTER

THREE

CODE EXAMPLE

The following example shows a small hello word example written with alpaka that can be run on different proces-
sors.

Listing 1: helloWorld.cpp

/* Copyright 2023 Benjamin Worpitz, Erik Zenker, Bernhard Manfred Gruber, Jan Stephan
* SPDX-License-Identifier: ISC
*/

#include <alpaka/alpaka.hpp>
#include <alpaka/example/ExampleDefaultAcc.hpp>

#include <iostream>

//! Hello World Kernel
//!
//! Prints "[x, y, z][gtid] Hello World" where tid is the global thread number.
struct HelloWorldKernel
{

template<typename TAcc>
ALPAKA_FN_ACC auto operator()(TAcc const& acc) const -> void
{

using Dim = alpaka::Dim<TAcc>;
using Idx = alpaka::Idx<TAcc>;
using Vec = alpaka::Vec<Dim, Idx>;
using Vec1 = alpaka::Vec<alpaka::DimInt<1u>, Idx>;

// In the most cases the parallel work distibution depends
// on the current index of a thread and how many threads
// exist overall. These information can be obtained by
// getIdx() and getWorkDiv(). In this example these
// values are obtained for a global scope.
Vec const globalThreadIdx = alpaka::getIdx<alpaka::Grid, alpaka::Threads>

→˓(acc);
Vec const globalThreadExtent = alpaka::getWorkDiv<alpaka::Grid,␣

→˓alpaka::Threads>(acc);

// Map the three dimensional thread index into a
// one dimensional thread index space. We call it
// linearize the thread index.
Vec1 const linearizedGlobalThreadIdx = alpaka::mapIdx<1u>(globalThreadIdx,␣

→˓globalThreadExtent);

// Each thread prints a hello world to the terminal
// together with the global index of the thread in

(continues on next page)
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(continued from previous page)

// each dimension and the linearized global index.
// Mind, that alpaka uses the mathematical index
// order [z][y][x] where the last index is the fast one.
printf(

"[z:%u, y:%u, x:%u][linear:%u] Hello World\n",
static_cast<unsigned>(globalThreadIdx[0u]),
static_cast<unsigned>(globalThreadIdx[1u]),
static_cast<unsigned>(globalThreadIdx[2u]),
static_cast<unsigned>(linearizedGlobalThreadIdx[0u]));

}
};

auto main() -> int
{
// Fallback for the CI with disabled sequential backend
#if defined(ALPAKA_CI) && !defined(ALPAKA_ACC_CPU_B_SEQ_T_SEQ_ENABLED)

return EXIT_SUCCESS;
#else

// Define the index domain
//
// Depending on your type of problem, you have to define
// the dimensionality as well as the type used for indices.
// For small index domains 16 or 32 bit indices may be enough
// and may be faster to calculate depending on the accelerator.
using Dim = alpaka::DimInt<3>;
using Idx = std::size_t;

// Define the accelerator
//
// It is possible to choose from a set of accelerators:
// - AccGpuCudaRt
// - AccGpuHipRt
// - AccCpuThreads
// - AccCpuOmp2Threads
// - AccCpuOmp2Blocks
// - AccCpuTbbBlocks
// - AccCpuSerial
//
// Each accelerator has strengths and weaknesses. Therefore,
// they need to be chosen carefully depending on the actual
// use case. Furthermore, some accelerators only support a
// particular workdiv, but workdiv can also be generated
// automatically.

// By exchanging the Acc and Queue types you can select where to execute the␣
→˓kernel.
// using Acc = alpaka::AccCpuSerial<Dim, Idx>;
using Acc = alpaka::ExampleDefaultAcc<Dim, Idx>;
std::cout << "Using alpaka accelerator: " << alpaka::getAccName<Acc>() <<␣

→˓std::endl;

// Defines the synchronization behavior of a queue
//
// choose between Blocking and NonBlocking
using QueueProperty = alpaka::Blocking;
using Queue = alpaka::Queue<Acc, QueueProperty>;

(continues on next page)
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(continued from previous page)

// Select a device
//
// The accelerator only defines how something should be
// parallelized, but a device is the real entity which will
// run the parallel program. The device can be chosen
// by id (0 to the number of devices minus 1) or you
// can also retrieve all devices in a vector (getDevs()).
// In this example the first devices is chosen.
auto const platformAcc = alpaka::Platform<Acc>{};
auto const devAcc = alpaka::getDevByIdx(platformAcc, 0);

// Create a queue on the device
//
// A queue can be interpreted as the work queue
// of a particular device. Queues are filled with
// tasks and alpaka takes care that these
// tasks will be executed. Queues are provided in
// non-blocking and blocking variants.
// The example queue is a blocking queue to a cpu device,
// but it also exists as non-blocking queue for this
// device (QueueCpuNonBlocking).
Queue queue(devAcc);

// Define the work division
//
// A kernel is executed for each element of a
// n-dimensional grid distinguished by the element indices.
// The work division defines the number of kernel instantiations as
// well as the type of parallelism used by the kernel execution task.
// Different accelerators have different requirements on the work
// division. For example, the sequential accelerator can not
// provide any thread level parallelism (synchronizable as well as non␣

→˓synchronizable),
// whereas the CUDA accelerator can spawn hundreds of synchronizing
// and non synchronizing threads at the same time.
//
// The workdiv is divided in three levels of parallelization:
// - grid-blocks: The number of blocks in the grid (parallel, not␣

→˓synchronizable)
// - block-threads: The number of threads per block (parallel, synchronizable).
// Each thread executes one kernel invocation.
// - thread-elements: The number of elements per thread (sequential, not␣

→˓synchronizable).
// Each kernel has to execute its elements sequentially.
//
// - Grid : consists of blocks
// - Block : consists of threads
// - Elements : consists of elements
//
// Threads in the same grid can access the same global memory,
// while threads in the same block can access the same shared
// memory. Elements are supposed to be used for vectorization.
// Thus, a thread can process data element size wise with its
// vector processing unit.
using Vec = alpaka::Vec<Dim, Idx>;

(continues on next page)
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(continued from previous page)

auto const elementsPerThread = Vec::all(static_cast<Idx>(1));
auto const threadsPerGrid = Vec{4, 2, 4};
using WorkDiv = alpaka::WorkDivMembers<Dim, Idx>;
WorkDiv const workDiv = alpaka::getValidWorkDiv<Acc>(

devAcc,
threadsPerGrid,
elementsPerThread,
false,
alpaka::GridBlockExtentSubDivRestrictions::Unrestricted);

// Instantiate the kernel function object
//
// Kernels can be everything that is trivially copyable, has a
// callable operator() and takes the accelerator as first
// argument. So a kernel can be a class or struct, a lambda, etc.
HelloWorldKernel helloWorldKernel;

// Run the kernel
//
// To execute the kernel, you have to provide the
// work division as well as the additional kernel function
// parameters.
// The kernel execution task is enqueued into an accelerator queue.
// The queue can be blocking or non-blocking
// depending on the chosen queue type (see type definitions above).
// Here it is synchronous which means that the kernel is directly executed.
alpaka::exec<Acc>(

queue,
workDiv,
helloWorldKernel
/* put kernel arguments here */);

alpaka::wait(queue);

return EXIT_SUCCESS;
#endif
}

3.1 Use alpaka in your project

We recommend to use CMake for integrating alpaka into your own project. There are two possible methods.

3.1.1 Use alpaka via find_package

The find_package method requires alpaka to be installed in a location where CMake can find it.

Hint: If you do not install alpaka in a default path such as /usr/local/ you have to set the CMake argument
-Dalpaka_ROOT=/path/to/alpaka/install.

The following example shows a minimal example of a CMakeLists.txt that uses alpaka:
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Listing 2: CMakeLists.txt

cmake_minimum_required(VERSION 3.22)

set(_TARGET_NAME myProject)
project(${_TARGET_NAME})

find_package(alpaka REQUIRED)

alpaka_add_executable(${_TARGET_NAME} helloWorld.cpp)
target_link_libraries(
${_TARGET_NAME}
PUBLIC alpaka::alpaka)

In the CMake configuration phase of the project, you must activate the accelerator you want to use:

cd <path/to/the/project/root>
mkdir build && cd build
# enable the CUDA accelerator
cmake .. -Dalpaka_ACC_GPU_CUDA_ENABLE=ON
# compile and link
cmake --build .
# execute application
./myProject

A complete list of CMake flags for the accelerator can be found here.

If the configuration was successful and CMake found the CUDA SDK, the C++ template accelerator type
alpaka::acc::AccGpuCudaRt is available.

3.1.2 Use alpaka via add_subdirectory

The add_subdirectory method does not require alpaka to be installed. Instead, the alpaka project folder must
be part of your project hierarchy. The following example expects alpaka to be found in the project_path/
thirdParty/alpaka:

Listing 3: CMakeLists.txt

cmake_minimum_required(VERSION 3.22)

set(_TARGET_NAME myProject)
project(${_TARGET_NAME})

add_subdirectory(thirdParty/alpaka)

alpaka_add_executable(${_TARGET_NAME} helloWorld.cpp)
target_link_libraries(
${_TARGET_NAME}
PUBLIC alpaka::alpaka)

The CMake configure and build commands are the same as for the find_package approach.

3.1. Use alpaka in your project 11
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CHAPTER

FOUR

ABSTRACTION

Note: Objective of the abstraction is to separate the parallelization strategy from the algorithm itself. Algorithm
code written by users should not depend on any parallelization library or specific strategy. This would enable ex-
changing the parallelization back-end without any changes to the algorithm itself. Besides allowing to test different
parallelization strategies this also makes it possible to port algorithms to new, yet unsupported, platforms.

Parallelism and memory hierarchies at all levels need to be exploited in order to achieve performance portabil-
ity across various types of accelerators. Within this chapter an abstraction will be derive that tries to provide a
maximum of parallelism while simultaneously considering implementability and applicability in hardware.

Looking at the current HPC hardware landscape, we often see nodes with multiple sockets/processors extended
by accelerators like GPUs or Intel Xeon Phi, each with their own processing units. Within a CPU or a Intel Xeon
Phi there are cores with hyper-threads, vector units and a large caching infrastructure. Within a GPU there are
many small cores and only few caches. Each entity in the hierarchy has access to different memories. For example,
each socket / processor manages its RAM, while the cores additionally have non-explicit access to L3, L2 and L1
caches. On a GPU there are global, constant, shared and other memory types which all can be accessed explicitly.
The interface has to abstract from these differences without sacrificing speed on any platform.

A process running on a multi-socket node is the largest entity within alpaka. The abstraction is only about the task
and data parallel execution on the process/node level and down. It does not provide any primitives for inter-node
communication. However, such libraries can be combined with alpaka.

An application process always has a main thread and is by definition running on the host. It can access the host
memory and various accelerator devices. Such accelerators can be GPUs, Intel Xeon Phis, the host itself or other
devices. Thus, the host not necessarily has to be different from the accelerator device used for the computations.
For instance, an Intel Xeon Phi simultaneously can be the host and the accelerator device.

The alpaka library can be used to offload the parallel execution of task and data parallel work simultaneously onto
different accelerator devices.

4.1 Task Parallelism

One of the basic building blocks of modern applications is task parallelism. For example, the operating system
scheduler, deciding which thread of which process gets how many processing time on which CPU core, enables
task parallelism of applications. It controls the execution of different tasks on different processing units. Such task
parallelism can be, for instance, the output of the progress in parallel to a download. This can be implemented via
two threads executing two different tasks.

The valid dependencies between tasks within an application can be defined as a DAG (directed acyclic graph) in
all cases. The tasks are represented by nodes and the dependencies by edges. In this model, a task is ready to be
executed if the number of incoming edges is zero. After a task finished it’s work, it is removed from the graph as
well as all of it’s outgoing edges,. This reduces the number of incoming edges of subsequent tasks.

The problem with this model is the inherent overhead and the missing hardware and API support. When it is
directly implemented as a graph, at least all depending tasks have to be updated and checked if they are ready to
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be executed after a task finished. Depending on the size of the graph and the number of edges this can be a huge
overhead.

OpenCL allows to define a task graph in a somewhat different way. Tasks can be enqueued into an out-of-order
command queue combined with events that have to be finished before the newly enqueued task can be started.
Tasks in the command queue with unmet dependencies are skipped and subsequent ones are executed. The
CL_QUEUE_OUT_OF_ORDER_EXEC_MODE_ENABLE property of a command queue is an optional feature only sup-
ported by few vendors. Therefore, it can not be assumed to be available on all systems.

CUDA on the other hand does currently (version 7.5) not support such out-of-order queues in any way. The user
has to define dependencies explicitly through the order the tasks are enqueued into the queues (called queues in
CUDA). Within a queue, tasks are always executed in sequential order, while multiple queues are executed in
parallel. Queues can wait for events enqueued into other queues.

In both APIs, OpenCL and CUDA, a task graph can be emulated by creating one queue per task and enqueuing a
unique event after each task, which can be used to wait for the preceding task. However, this is not feasible due to
the large queue and event creation costs as well as other overheads within this process.

Therefore, to be compatible with a wide range of APIs, the interface for task parallelism has to be constrained.
Instead of a general DAG, multiple queues of sequentially executed tasks will be used to describe task parallelism.
Events that can be enqueued into the queues enhance the basic task parallelism by enabling synchronization between
different queues, devices or the host threads.

4.2 Data Parallelism

In contrast to task parallelism, data parallelism describes the execution of one and the same task on multiple, often
related data elements. For example, an image color space conversion is a textbook example of a data parallel
task. The same operation is executed independently on each pixel. Other data parallel algorithms additionally
introduce dependencies between threads in the input-, intermediate-, or output-data. For example, the calculation
of a brightness histogram has no input-data dependencies. However, all pixel brightness values finally have to be
merged into a single result. Even these two simple examples show that it is necessary to think about the interaction
of parallel entities to minimize the influence of data dependencies.

Furthermore, it is necessary to respect the principles of spatial and temporal locality. Current hardware is built
around these locality principles to reduce latency by using hierarchical memory as a trade-off between speed and
hardware size. Multiple levels of caches, from small and very fast ones to very large and slower ones exploit
temporal locality by keeping recently referenced data as close to the actual processing units as possible. Spatial
locality in the main memory is also important for caches because they are usually divided into multiple lines that
can only be exchanged one cache line at a time. If one data element is loaded and cached, it is highly likely that
nearby elements are also cached. If the pixels of an image are stored row wise but are read out column wise, the
spatial locality assumption of many CPUs is violated and the performance suffers. GPUs on the other hand do not
have a large caching hierarchy but allow explicit access to a fast memory shared across multiple cores. Therefore,
the best way to process individual data elements of a data parallel task is dependent on the data structure as well
as the underlying hardware.

The main part of the alpaka abstraction is the way it abstracts data parallelism and allows the algorithm writer to
take into account the hierarchy of processing units, their data parallel features and corresponding memory regions.
The abstraction developed is influenced and based on the groundbreaking CUDA and OpenCL abstractions of
a multidimensional grid of threads with additional hierarchy levels in between. Another level of parallelism is
added to those abstractions to unify the data parallel capabilities of modern hardware architectures. The explicit
access to all hierarchy levels enables the user to write code that runs performant on all current platforms. However,
the abstraction does not try to automatically optimize memory accesses or data structures but gives the user full
freedom to use data structures matching the underlying hardware preferences.
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4.2.1 Thread

Theoretically, a basic data parallel task can be executed optimally by executing one thread per independent data
element. In this context, the term thread does not correspond to a native kernel-thread, an OpenMP thread, a CUDA
thread, a user-level thread or any other such threading variant. It only represents the execution of a sequence of
commands forming the desired algorithm on a per data element level. This ideal one-to-one mapping of data ele-
ments to threads leads to the execution of a multidimensional grid of threads corresponding to the data structure
of the underlying problem. The uniform function executed by each of the threads is called a kernel. Some algo-
rithms such as reductions require the possibility to synchronize or communicate between threads to calculate a
correct result in a time optimal manner. Therefore our basic abstraction requires a n-dimensional grid of synchro-
nizable threads each executing the same kernel. The following figure shows an hypothetical processing unit that
could optimally execute this data parallel task. The threads are mapped one-to-one to the cores of the processor.
For a time optimal execution, the cores have to have an all-to-all equal length connection for communication and
synchronization.

The only difference between the threads is their positional index into the grid which allows each thread to compute
a different part of the solution. Threads can always access their private registers and the global memory.

Registers

All variables with default scope within a kernel are automatically saved in registers and are not shared automatically.
This memory is local to each thread and can not be accessed by other threads.

Global Memory

The global memory can be accessed from every thread in the grid as well as from the host thread. This is typically
the largest but also the slowest memory available.

Individual threads within the grid are allowed to statically or dynamically allocate buffers in the global memory.

Prior to the execution of a task, the host thread copies the input buffers and allocates the output buffers onto the
accelerator device. Pointers to these buffers then can be given as arguments to the task invocation. By using the
index of each thread within the grid, the offset into the global input and output buffers can be calculated. After the
computation has finished, the output buffer can be used either as input to a subsequent task or can be copied back
to the host.

4.2. Data Parallelism 15
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4.2.2 Block

Building a processor with possibly thousands of cores where all cores have an equal length connection for fast
communication and synchronization is not viable. Either the processor size would have to grow exponentially
with the number of cores or the all-to-all communication speed would decrease so much that computations on the
processor would be impractical. Therefore, the communication and synchronization of threads has to be limited to
sizes manageable by real hardware.

Figure ref{fig:block} depicts the solution of introducing a new hierarchy level in the abstraction. A hypothetical
processor is allowed to provide synchronization and fast communication within blocks of threads but is not required
to provide synchronization across blocks. The whole grid is subdivided into equal sized blocks with a fast but
small shared memory. Current accelerator abstractions (CUDA and OpenCL) only support equal sized blocks.
This restriction could possibly be lifted to support future accelerators with heterogeneous block sizes.

There is another reason why independent blocks are necessary. Threads that can communicate and synchronize
require either a one-to-one mapping of threads to cores, which is impossible because the number of data elements
is theoretically unlimited, or at least a space to store the state of each thread. Even old single core CPUs were
able to execute many communicating and synchronizing threads by using cooperative or preemptive multitasking.
Therefore, one might think that a single core would be enough to execute all the data parallel threads. But the
problem is that even storing the set of registers and local data of all the possible millions of threads of a task grid
is not always viable. The blocking scheme solves this by enabling fast interaction of threads on a local scale but
additionally removes the necessity to store the state of all threads in the grid at once because only threads within a
block must be executed in parallel. Within a block of cores there still has to be enough memory to store all registers
of all contained threads. The independence of blocks allows applications to scale well across diverse devices. As
can be seen in the following figure, the accelerator can assign blocks of the task grid to blocks of cores in arbitrary
order depending on availability and workload.
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Shared Memory

Each block has its own shared memory. This memory can only be accessed explicitly by threads within the same
block and gets discarded after the complete block finished its calculation. This memory is typically very fast but
also very small. No variables are shared between kernels by default.

4.2.3 Warp

With the current abstraction only independent parallelism via blocks and synchronizable parallelism via threads
can be expressed. However, there are more variants of parallelism in real hardware. Because all threads in the grid
are executing the same kernel and even the same instruction at the same time when ignoring divergent control flows,
a lot of chip space can be saved. Multiple threads can be executed in perfect synchronicity, which is also called
lock-step. A group of such threads executing the same instruction at the same time is called a warp . All threads
within a warp share a single instruction pointer (IP), and all cores executing the threads share one instruction fetch
(IF) and instruction decode (ID) unit.

4.2. Data Parallelism 17
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Even threads with divergent control flows can be executed within one warp. CUDA, for example, solves this by
supporting predicated execution and warp voting. For long conditional branches the compiler inserts code which
checks if all threads in the warp take the same branch. For small branches, where this is too expensive, all threads
always execute all branches. Control flow statements result in a predicate and only in those threads where it is true,
the predicated instructions will have an effect.

Not only CUDA GPUs support the execution of multiple threads in a warp. Full blown vector processors with
good compilers are capable of combining multiple loop iterations containing complex control flow statements in a
similar manner as CUDA.

Due to the synchronitiy of threads within a warp, memory operations will always occur at the same time in all
threads. This allows to coalesce memory accesses. Different CUDA devices support different levels of memory
coalescing. Older ones only supported combining multiple memory accesses if they were aligned and sequential
in the order of thread indices. Newer ones support unaligned scattered accesses as long as they target the same 128
byte segment.

The ability of very fast context switches between warps and a queue of ready warps allows CUDA capable GPUs
to hide the latency of global memory operations.

4.2.4 Element

To use the maximum available computing power of, for example, a modern x86 processor, the computation has
to utilize the SIMD vector registers. Many current architectures support issuing a single instruction that can be
applied to multiple data elements in parallel.

The original x86 instruction set architecture did not support SIMD instructions but has been enhanced with MMX
(64 bit width registers), SSE (128 bit width registers), AVX (256 bit width registers) and AVX-512 (512 bit width
registers) extensions. In varying degree, they allow to process multiple 32 bit and 64 bit floating point numbers as
well as 8, 16, 32 and 64 bit signed and unsigned integers.

CUDA capable GPUs do not have vector registers where multiple values of type float or double can be manipu-
lated by one instruction. Nevertheless, newer CUDA capable devices implement basic SIMD instructions on pairs
of 16 bit values and quads of 8-bit values. They are described in the documentation of the PTX instruction set
architecture chapter 9.7.13 but are only of any use in very special problem domains, for example for deep learning.

It would be optimal if the compiler could automatically vectorize our kernels when they are called in a loop and
vectorization is supported by the underlying accelerator. However, besides full blown vector processors, main-
stream CPUs do not support predicated execution or similar complex things within vector registers. At most, there
is support for masking operations which allow to emulate at least some conditional branching. Therefore, this
missing hardware capability has to be circumvented by the compiler. There are scientific research projects such as
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the work done by Ralf Karrenberg et al [1, 2, 3 ] building on the LLVM compiler infrastructure supporting such
whole-function vectorization. However, current mainstream compilers do not support automatic vectorization of
basic, non trivial loops containing control flow statements (if, else, for, etc.) or other non-trivial memory oper-
ations. Therefore, it has to be made easier for the compiler to recognize the vectorization possibilities by making
it more explicit.

The opposite of automatic whole function vectorization is the fully explicit vectorization of expressions via com-
piler intrinsics directly resulting in the desired assembly instruction. A big problem when trying to utilize fully
explicit vectorization is, that there is no common foundation supported by all explicit vectorization methods. A
wrapper unifying the x86 SIMD intrinsics found in the intrin.h or x86intrin.h headers with those supported
on other platforms, for example ARM NEON (arm_neon.h), PowerPC Altivec (altivec.h) or CUDA is not
available and to write one is a huge task in itself. However, if this would become available in the future, it could
easily be integrated into alpaka kernels.

Due to current compilers being unable to vectorize whole functions and the explicit vectorization intrinsics not
being portable, one has to rely on the vectorization capabilities of current compilers for primitive loops only con-
sisting of a few computations. By creating a grid of data elements, where multiple elements are processed per
thread and threads are pooled in independent blocks, as it is shown in the figure below, the user is free to loop se-
quentially over the elements or to use vectorization for selected expressions within the kernel. Even the sequential
processing of multiple elements per thread can be useful depending on the architecture. For example, the NVIDIA
cuBLAS general matrix-matrix multiplication (GEMM) internally executes only one thread for each second matrix
data element to better utilize the registers available per thread.
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Note: The best solution to vectorization would be one, where the user does not have to do anything. This is
not possible because the smallest unit supplied by the user is a kernel which is executed in threads which can
synchronize.

It is not possible to execute multiple kernels sequentially to hide the vectorization by starting a kernel-thread for e.g.
each 4th thread in a block and then looping over the 4 entries. This would prohibit the synchronization between
these threads. By executing 4 fibers inside such a vectorization kernel-thread we would allow synchronization
again but prevent the loop vectorizer from working.

4.3 Summary

This abstraction is called Redundant Hierarchical Parallelism. This term is inspired by the paper The Future of
Accelerator Programming: Abstraction, Performance or Can We Have Both? PDF DOI It investigates a similar
concept of copious parallel programming reaching 80%-90% of the native performance while comparing CPU
and GPU centric versions of an OpenCL n-body simulation with a general version utilizing parallelism on multiple
hierarchy levels.

The CUDA or OpenCL abstractions themselves are very similar to the one designed in the previous sections and
consists of all but the Element level. However, as has been shown, all five abstraction hierarchy levels are necessary
to fully utilize current architectures. By emulating unsupported or ignoring redundant levels of parallelism, algo-
rithms written with this abstraction can always be mapped optimally to all supported accelerators. The following
table summarizes the characteristics of the proposed hierarchy levels.

Hierarchy Level Parallelism Synchronizable
— — —
grid sequential / parallel – / X
block parallel –
warp parallel X
thread parallel / lock-step X
element sequential –

Depending on the queue a task is enqueued into, grids will either run in sequential order within the same queue
or in parallel in different queues. They can be synchronized by using events. Blocks can not be synchronized and
therefore can use the whole spectrum of parallelism ranging from fully parallel up to fully sequential execution
depending on the device. Warps combine the execution of multiple threads in lock-step and can be synchronized
implicitly by synchronizing the threads they contain. Threads within a block are executed in parallel warps and
each thread computes a number of data elements sequentially.
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FIVE

LIBRARY INTERFACE

As described in the chapter about the Abstraction, the general design of the library is very similar to CUDA and
OpenCL but extends both by some points, while not requiring any language extensions. General interface design
as well as interface implementation decisions differentiating alpaka from those libraries are described in the Ra-
tionale section. It uses C++ because it is one of the most performant languages available on nearly all systems.
Furthermore, C++17 allows to describe the concepts in a very abstract way that is not possible with many other
languages. The alpaka library extensively makes use of advanced functional C++ template meta-programming
techniques. The Implementation Details section discusses the C++ library and the way it provides extensibility
and optimizability.

5.1 Structure

The alpaka library allows offloading of computations from the host execution domain to the accelerator execution
domain, whereby they are allowed to be identical.

In the abstraction hierarchy the library code is interleaved with user supplied code as is depicted in the following
figure.

User code invokes library functions, which in turn execute the user provided thread function (kernel) in parallel
on the accelerator. The kernel in turn calls library functions when accessing accelerator properties and methods.
Additionally, the user can enhance or optimize the library implementations by extending or replacing specific parts.

The alpaka abstraction itself only defines requirements a type has to fulfill to be usable with the template functions
the library provides. These type constraints are called concepts in C++.

A concept is a set of requirements consisting of valid expressions, associated types, invariants, and complexity
guarantees. A type that satisfies the requirements is said to model the concept. A concept can extend the require-
ments of another concept, which is called refinement. BoostConcepts

Concepts allow to safely define polymorphic algorithms that work with objects of many different types.

The alpaka library implements a stack of concepts and their interactions modeling the abstraction defined in the
previous chapter. Furthermore, default implementations for various devices and accelerators modeling those are
included in the library. The interaction of the main user facing concepts can be seen in the following figure.
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For each type of Device there is a Platform for enumerating the available Device``s. A ``Device is the
requirement for creating Queues and Events as it is for allocating Buffers on the respective Device. Buffers
can be copied, their memory be set and they can be pinned or mapped. Copying and setting a buffer requires the
corresponding Copy and Set tasks to be enqueued into the Queue. An Event can be enqueued into a Queue and
its completion state can be queried by the user. It is possible to wait for (synchronize with) a single Event, a Queue
or a whole Device. An Executor can be enqueued into a Queue and will execute the Kernel (after all previous
tasks in the queue have been completed). The Kernel in turn has access to the Accelerator it is running on. The
Accelerator provides the Kernel with its current index in the block or grid, their extents or other data as well
as it allows to allocate shared memory, execute atomic operations and many more.

5.2 Interface Usage

5.2.1 Accelerator Functions

Functions that should be executable on an accelerator have to be annotated with the execution domain (one of
ALPAKA_FN_HOST, ALPAKA_FN_ACC and ALPAKA_FN_HOST_ACC). They most probably also require access to the
accelerator data and methods, such as indices and extents as well as functions to allocate shared memory and
to synchronize all threads within a block. Therefore the accelerator has to be passed in as a templated constant
reference parameter as can be seen in the following code snippet.

template<
typename TAcc>

ALPAKA_FN_ACC auto doSomethingOnAccelerator(
TAcc const & acc/*,
...*/) // Arbitrary number of parameters

-> int // Arbitrary return type
{

(continues on next page)
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(continued from previous page)

//...
}

5.2.2 Kernel Definition

A kernel is a special function object which has to conform to the following requirements:

• it has to fulfill the std::is_trivially_copyable trait (has to be copyable via memcpy)

• the operator() is the kernel entry point * it has to be an accelerator executable function * it has to return
void * its first argument has to be the accelerator (templated for arbitrary accelerator back-ends) * all other
arguments must fulfill std::is_trivially_copyable

The following code snippet shows a basic example of a kernel function object.

struct MyKernel
{

template<
typename TAcc> // Templated on the accelerator type.

ALPAKA_FN_ACC // Macro marking the function to be executable on all␣
→˓accelerators.
auto operator()( // The function / kernel to execute.

TAcc const & acc/*, // The specific accelerator implementation.
...*/) const // Must be 'const'.

-> void
{

//...
}

// Class can have members but has to be std::is_trivially_
→˓copyable.

// Classes must not have pointers or references to host memory!
};

The kernel function object is shared across all threads in all blocks. Due to the block execution order being unde-
fined, there is no safe and consistent way of altering state that is stored inside of the function object. Therefore, the
operator() of the kernel function object has to be const and is not allowed to modify any of the object members.

Kernels can also be defined via lambda expressions.

auto kernel = [] ALPAKA_FN_ACC (auto const & acc /* , ... */) -> void {
// ...

}

Attention: The Nvidia nvcc does not support generic lambdas which are marked with __device__, which
is what ALPAKA_FN_ACC expands to (among others) when the CUDA backend is active. Therefore, a
workaround is required. The type of the acc must be defined outside the lambda.

int main() {
// ...
using Acc = alpaka::ExampleDefaultAcc<Dim, Idx>;

auto kernel = [] ALPAKA_FN_ACC (Acc const & acc /* , ... */) -> void {
// ...

}
// ...

}
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However, the kernel is no longer completely generic and cannot be used with different accelerators. If this is
required, the kernel must be defined as a function object.

5.2.3 Index and Work Division

The alpaka::getWorkDiv and the alpaka::getIdx functions both return a vector of the dimensionality the ac-
celerator has been defined with. They are parametrized by the origin of the calculation as well as the unit in which
the values are calculated. For example, alpaka::getWorkDiv<alpaka::Grid, alpaka::Threads>(acc) re-
turns a vector with the extents of the grid in units of threads.

5.2.4 Memory fences

Note: Memory fences should not be mistaken for synchronization functions between threads. They solely en-
force the ordering of certain memory instructions (see below) and restrict how other threads can observe this
order. If you need to rely on the results of memory operations being visible to other threads you must use
alpaka::syncBlockThreads or atomic functions instead.

The alpaka::mem_fence function can be used inside an alpaka kernel to issue a memory fence instruction. This
guarantees the following for the local thread and regardless of global or shared memory:

• All loads that occur before the fence will happen before all loads occurring after the fence, i.e. no LoadLoad
reordering.

• All stores that occur before the fence will happen before all stores occurring after the fence, i.e. no StoreStore
reordering.

• The order of stores will be visible to other threads inside the scope (but not necessarily their results).

Note: alpaka::mem_fence does not guarantee that there will be no LoadStore reordering. Depending on the
back-end, loads occurring before the fence may still be reordered with stores occurring after the fence.

Memory fences can be issued on the block level (alpaka::memory_scope::Block), grid level
(alpaka::memory_scope::Grid) and the device level (alpaka::memory_scope::Device). Depending
on the memory scope, the StoreStore order will be visible to other threads in the same block, in the same grid
(_i.e._ within the same kernel launch), or on the whole device (_i.e._ across concurrent kernel launches).

Some accelerators (like GPUs) follow weaker cache coherency rules than x86 CPUs. In order to avoid storing to (or
loading from) a cache or register it is necessary to prefix all observed buffers with ALPAKA_DEVICE_VOLATILE.
This enforces that all loads / stores access the actual global / shared memory location.

Example:

/* Initial values:
* vars[0] = 1
* vars[1] = 2
*/
template<typename TAcc>
ALPAKA_FN_ACC auto operator()(TAcc const& acc, bool* success, ALPAKA_DEVICE_VOLATILE␣
→˓int* vars) const -> void
{

auto const idx = alpaka::getIdx<alpaka::Grid, alpaka::Threads>(acc)[0u];

// Global thread 0 is producer
if(idx == 0)
{

vars[0] = 10;
alpaka::mem_fence(acc, alpaka::memory_scope::Device{});
vars[1] = 20;

(continues on next page)
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}

auto const b = vars[1];
alpaka::mem_fence(acc, alpaka::memory_scope::Device{});
auto const a = vars[0];

/* Possible results at this point:
* a == 1 && b == 2
* a == 10 && b == 2
* a == 10 && b == 20
*
* but NOT:
* a == 1 && b == 20
*/

}

5.2.5 Memory Management

The memory allocation function of the alpaka library (alpaka::allocBuf<TElem>(device, extents)) is
uniform for all devices, even for the host device. It does not return raw pointers but reference counted memory
buffer objects that remove the necessity for manual freeing and the possibility of memory leaks. Additionally the
memory buffer objects know their extents, their pitches as well as the device they reside on. This allows buffers
that possibly reside on different devices with different pitches to be copied only by providing the buffer objects as
well as the extents of the region to copy (alpaka::memcpy(bufDevA, bufDevB, copyExtents).

5.2.6 Kernel Execution

The following source code listing shows the execution of a kernel by enqueuing the execution task into a queue.

// Define the dimensionality of the task.
using Dim = alpaka::DimInt<1u>;
// Define the type of the indexes.
using Idx = std::size_t;
// Define the accelerator to use.
using Acc = alpaka::AccCpuSerial<Dim, Idx>;
// Select the queue type.
using Queue = alpaka::QueueCpuNonBlocking;

// Select a device to execute on.
auto platformAcc = alpaka::Platform<Acc>{};
auto devAcc = alpaka::getDevByIdx(platformAcc, 0);
// Create a queue to enqueue the execution into.
Queue queue(devAcc);

// Create a 1-dimensional work division with 256 blocks a 16 threads.
auto const workDiv = alpaka::WorkDivMembers<Dim, Idx>(256u, 16u);
// Create an instance of the kernel function object.
MyKernel kernel;
// Enqueue the execution task into the queue.
alpaka::exec<Acc>(queue, workDiv, kernel/*, arguments ...*/);

The dimensionality of the task as well as the type for index and extent have to be defined explicitly. Following this,
the type of accelerator to execute on, as well as the type of the queue have to be defined. For both of these types
instances have to be created. For the accelerator this has to be done indirectly by enumerating the required device
via the device manager, whereas the queue can be created directly.
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To execute the kernel, an instance of the kernel function object has to be constructed. Following this, an execution
task combining the work division (grid and block sizes) with the kernel function object and the bound invocation
arguments has to be created. After that this task can be enqueued into a queue for immediate or later execution
(depending on the queue used).
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CHAPTER

SIX

CHEATSHEET

6.1 General

• Getting alpaka: https://github.com/alpaka-group/alpaka

• Issue tracker, questions, support: https://github.com/alpaka-group/alpaka/issues

• All alpaka names are in namespace alpaka and header file alpaka/alpaka.hpp

• This document assumes

#include <alpaka/alpaka.hpp>
using namespace alpaka;

6.2 Accelerator, Platform and Device

Define in-kernel thread indexing type

using Dim = DimInt<constant>;
using Idx = IntegerType;

Define accelerator type (CUDA, OpenMP,etc.)

using Acc = AcceleratorType<Dim,Idx>;

AcceleratorType:

AccGpuCudaRt,
AccCpuOmp2Blocks,
AccCpuOmp2Threads,
AccCpuOmp4,
AccCpuTbbBlocks,
AccCpuThreads,
AccCpuSerial

Create platform and select a device by index

auto const platform = Platform<Acc>{};
auto const device = getDevByIdx(platform, index);
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6.3 Queue and Events

Create a queue for a device

using Queue = Queue<Acc, Property>;
auto queue = Queue{device};

Property:

Blocking
NonBlocking

Put a task for execution

enqueue(queue, task);

Wait for all operations in the queue

wait(queue);

Create an event

Event<Queue> event{device};

Put an event to the queue

enqueue(queue, event);

Check if the event is completed

isComplete(event);

Wait for the event (and all operations put to the same queue before it)

wait(event);

6.4 Memory

Memory allocation and transfers are symmetric for host and devices, both done via alpaka API

Create a CPU device for memory allocation on the host side

auto const platformHost = PlatformCpu{};
auto const devHost = getDevByIdx(platformHost, 0);

Allocate a buffer in host memory

Vec<Dim, Idx> extent = value;
using BufHost = Buf<DevHost, DataType, Dim, Idx>;
BufHost bufHost = allocBuf<DataType, Idx>(devHost, extent);

(Optional, affects CPU – GPU memory copies) Prepare it for asynchronous memory copies

prepareForAsyncCopy(bufHost);

Create a view to host memory represented by a pointer
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using Dim = alpaka::DimInt<1u>;
Vec<Dim, Idx> extent = value;
DataType* date = new DataType[extent[0]];
auto hostView = createView(devHost, data, extent);

Create a view to host std::vector

auto vec = std::vector<DataType>(42u);
auto hostView = createView(devHost, vec);

Create a view to host std::array

std::vector<DataType, 2> array = {42u, 23};
auto hostView = createView(devHost, array);

Get a raw pointer to a buffer or view initialization, etc.

DataType* raw = view::getPtrNative(bufHost);
DataType* rawViewPtr = view::getPtrNative(hostView);

Get an accessor to a buffer and the accessor’s type (experimental)

experimental::BufferAccessor<Acc, Elem, N, AccessTag> a =␣
→˓experimental::access(buffer);

Allocate a buffer in device memory

auto bufDevice = allocBuf<DataType, Idx>(device, extent);

Enqueue a memory copy from host to device

memcpy(queue, bufDevice, bufHost, extent);

Enqueue a memory copy from device to host

memcpy(queue, bufHost, bufDevice, extent);

6.5 Kernel Execution

Automatically select a valid kernel launch configuration

Vec<Dim, Idx> const globalThreadExtent = vectorValue;
Vec<Dim, Idx> const elementsPerThread = vectorValue;

auto autoWorkDiv = getValidWorkDiv<Acc>(
device,
globalThreadExtent, elementsPerThread,
false,
GridBlockExtentSubDivRestrictions::Unrestricted);

Manually set a kernel launch configuration

Vec<Dim, Idx> const blocksPerGrid = vectorValue;
Vec<Dim, Idx> const threadsPerBlock = vectorValue;
Vec<Dim, Idx> const elementsPerThread = vectorValue;

(continues on next page)
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using WorkDiv = WorkDivMembers<Dim, Idx>;
auto manualWorkDiv = WorkDiv{blocksPerGrid,

threadsPerBlock,
elementsPerThread};

Instantiate a kernel and create a task that will run it (does not launch it yet)

Kernel kernel{argumentsForConstructor};
auto taskRunKernel = createTaskKernel<Acc>(workDiv, kernel, parameters);

acc parameter of the kernel is provided automatically, does not need to be specified here

Put the kernel for execution

enqueue(queue, taskRunKernel);

6.6 Kernel Implementation

Define a kernel as a C++ functor

struct Kernel {
template<typename Acc>
ALPAKA_FN_ACC void operator()(Acc const & acc, parameters) const { ... }

};

ALPAKA_FN_ACC is required for kernels and functions called inside, acc is mandatory first parameter, its type is
the template parameter

Access multi-dimensional indices and extents of blocks, threads, and elements

auto idx = getIdx<Origin, Unit>(acc);
auto extent = getWorkDiv<Origin, Unit>(acc);

Origin:

Grid, Block, Thread

Unit:

Blocks, Threads, Elems

Access components of multi-dimensional indices and extents

auto idxX = idx[0];

Linearize multi-dimensional vectors

auto linearIdx = mapIdx<1u>(idx, extent);

Allocate static shared memory variable

Type & var = declareSharedVar<Type, __COUNTER__>(acc);

Get dynamic shared memory pool, requires the kernel to specialize

trait::BlockSharedMemDynSizeBytes
Type * dynamicSharedMemoryPool = getDynSharedMem<Type>(acc);
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Synchronize threads of the same block

syncBlockThreads(acc);

Atomic operations

auto result = atomicOp<Operation>(acc, arguments);

Operations:

AtomicAdd, AtomicSub, AtomicMin, AtomicMax, AtomicExch,
AtomicInc, AtomicDec, AtomicAnd, AtomicOr, AtomicXor, AtomicCas

Memory fences on block-, grid- or device level (guarantees LoadLoad and StoreStore ordering)

mem_fence(acc, memory_scope::Block{});
mem_fence(acc, memory_scope::Grid{});
mem_fence(acc, memory_scope::Device{});

Warp-level operations

uint64_t result = warp::ballot(acc, idx == 1 || idx == 4);
assert( result == (1<<1) + (1<<4) );

int32_t valFromSrcLane = warp::shfl(val, srcLane);

Math functions take acc as additional first argument

math::sin(acc, argument);

Similar for other math functions.

Generate random numbers

auto distribution = rand::distribution::createNormalReal<double>(acc);
auto generator = rand::engine::createDefault(acc, seed, subsequence);
auto number = distribution(generator);
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CHAPTER

SEVEN

RATIONALE

7.1 Interface Distinction

The alpaka library is different from other similar libraries (especially CUDA) in that it refrains from using implicit
or hidden state. This and other interface design decisions will be explained int the following paragraphs.

7.1.1 No Current Device:

The CUDA runtime API for example supplies a current device for each user code kernel-thread. Working with
multiple devices requires to call cudaSetDevice to change the current device whenever an operation should be
executed on a non-current device. Even the functions for creating a queue (cudaStreamCreate) or an event
(cudaEventCreate) use the current device without any way to create them on a non current device. In the case of
an event this dependency is not obvious, since at the same time queues can wait for events from multiple devices
allowing cross-device synchronization without any additional work. So conceptually an event could also have been
implemented device independently. This can lead to hard to track down bugs due to the non-explicit dependencies,
especially in multi-threaded code using multiple devices.

7.1.2 No Default Device:

In contrast to the CUDA runtime API alpaka does not provide a device by default per kernel-thread. Especially
in combination with OpenMP parallelized host code this keeps users from surprises. The following code snippet
shows that it does not necessarily do what one would expect.

1 cudaSetDevice(1);
2

3 #pragma omp parallel for
4 for(int i = 0; i<10; ++i)
5 {
6 kernel<<<blocks,threads>>>(i);
7 }

Depending on what the CUDA runtime API selects as default device for each of the OpenMP threads (due to each
of them having its own current device), not all of the kernels will necessarily run on device one.

In the alpaka library all such dependencies are made explicit. All functions depending on a device require it to be
given as a parameter. The alpaka CUDA back-end checks before forwarding the calls to the CUDA runtime API
whether the current device matches the given one and changes it if required. The alpaka CUDA back-end does not
reset the current device to the one prior to the method invocation out of performance considerations. This has to
be considered when native CUDA code is combined with alpaka code.
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7.1.3 No Default Queue:

CUDA allows to execute commands without specifying a queue. The default queue that is used synchronizes
implicitly with all other queues on the device. If a command queue is issued to the default, all other asynchronous
queues have to wait before executing any new commands, even when they have been enqueued much earlier. This
can introduce hard to track down performance issues. As of CUDA 7.0 the default queue can be converted to a non
synchronizing queue with a compiler option. Because concurrency is crucial for performance and users should
think about the dependencies between their commands from begin on, alpaka does not provide such a default
queue. All asynchronous operations (kernel launches, memory copies and memory sets) require a queue to be
executed in.

7.2 No Implicit Built-in Variables and Functions:

Within CUDA device functions (functions annotated with __global__ or __device__) built-in functions (__sync-
threads, __threadfence, atomicAdd, . . . ) and variables (gridDim, blockIdx, blockDim, threadIdx, warpSize, . . . )
are provided.

It would have been possible to emulate those implicit definitions by forcing the kernel function object to inherit
from a class providing these functions and members. However functions outside the kernel function object would
then pose a problem. They do not have access to those functions and members, the function object has inherited.
To circumvent this, the functions and members would have to be public, the inheritance would have to be public and
a reference to the currently executing function object would have to be passed as parameter to external functions.
This would have been too cumbersome and inconsistent. Therefore access to the accelerator is given to the user
kernel function object via one special input parameter representing the accelerator. After that this accelerator object
can simply be passed to other functions. The built-in variables can be accessed by the user via query functions on
this accelerator.

• Abandoning all the implicit and default state makes it much easier for users of the library to reason about
their code. *

7.3 No Language Extensions:

Unlike CUDA, the alpaka library does not extend the C++ language with any additional variable qualifiers
(__shared__, __constant__, __device__) defining the memory space. Instead of those qualifiers alpaka provides
accelerator functions to allocate memory in different the different memory spaces.

7.4 No Dimensionality Restriction:

CUDA always uses three-dimensional indices and extents, even though the task may only be one or two dimensional.
OpenCL on the other hand allows grid and block dimensions in the range [1,3] but does not provide corresponding
n-dimensional indices, but rather provides functions like get_global_id or get_local_id, which require the dimen-
sion in which the one-dimensional ID is to be queried as a parameter. By itself this is no problem, but how can be
assured that a two-dimensional kernel is called with grid and block extents of the correct dimensionality at compile
time? How can it be assured that a kernel which only uses threadIdx.x or equivalently calls get_global_id(0) will
not get called with two dimensional grid and block extents? Because the result in such a case is undefined, and
most of the time not wanted by the kernel author, this should be easy to check and reject at compile-time. In alpaka
all accelerators are templatized on the dimensionality. This allows a two-dimensional image filter to assert that it
is only called with a two dimensional accelerator. Thereby the algorithms can check for supported dimensionality
of the accelerator at compile time instead of runtime. Furthermore with the dimension being a template parameter,
the CPU back-end implementations are able to use only the number of nested loops really necessary instead of
the 6 loops (2 x 3 loops for grid blocks and block threads), which are mandatory to emulate the CUDA threaded
blocking scheme.
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By hiding all the accelerator functionality inside of the accelerator object that is passed to the user kernel, the
user of the *alpaka library is not faced with any non-standard C++ extensions. Nevertheless the CUDA back-end
internally uses those language extensions.*

7.5 Integral Sizes of Arbitrary Type:

The type of sizes such as extents, indices and related variables are depending on a template parameter of the
accelerator and connected classes. This allows the kernel to be executed with sizes of arbitrary ranges. Thereby it
is possible to force the accelerator back-ends to perform all internal index, extent and other integral size depending
computations with a given precision. This is especially useful on current NVIDIA GPUs. Even though they support
64-bit integral operations, they are emulated with multiple 32-bit operations. This can be a huge performance
penalty when the sizes of buffers, offsets, indices and other integral variables holding sizes are known to be limited.

7.6 No Synchronous (Blocking) and Asynchronous (Non-Blocking)
Function Versions:

CUDA provides two versions of many of the runtime functions, for example, cudaMemcpyAsync and cudaMemcpy.
The asynchronous version requires a queue while the synchronous version does not need a queue parameter. The
asynchronous version immediately returns control back to the caller while the task is enqueued into the given
queue and executed later in parallel to the host code. The synchronous version waits for the task to finish before
the function call returns control to the caller. Inconsistently, all kernels in a CUDA program can only be started
either asynchronously by default or synchronously if CUDA_LAUNCH_BLOCKING is defined. There is no way
to specify this on a per kernel basis. To switch a whole application from asynchronous to synchronous calls, for
example for debugging reasons, it is necessary to change the names of all the runtime functions being called as well
as their parameters. In alpaka this is solved by always enqueuing all tasks into a queue and not defining a default
queue. Non-blocking queues as well as blocking queues are provided for all devices. Changes to the synchronicity
of multiple tasks can be made on a per queue basis by changing the queue type at the place of creation. There is
no need to change any line of calling code.

7.7 Memory Management

Memory buffers can not only be identified by the pointer to their first byte. The C++ new and malloc, the CUDA
cudaMalloc as well as the OpenCL clCreateBuffer functions all return a plain pointer. This is not enough when
working with multiple accelerators and multiple devices. To know where a specific pointer was allocated, additional
information has to be stored to uniquely identify a memory buffer on a specific device. Memory copies between
multiple buffers additionally require the buffer extents and pitches to be known. Many APIs, for example CUDA,
require the user to store this information externally. To unify the usage, alpaka stores all the necessary information
in a memory buffer object.

7.8 Acceleratable Functions

Many parallelization libraries / frameworks do not fully support the separation of the parallelization strategy from
the algorithm itself. OpenMP, for example, fully mixes the per thread algorithm and the parallelization strategy.
This can be seen in the source listing showing a simple AXPY computation with OpenMP.

1 template<
2 typename TIdx,
3 typename TElem>
4 void axpyOpenMP(
5 TIdx const n,

(continues on next page)
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6 TElem const alpha,
7 TElem const * const X,
8 TElem * const Y)
9 {

10 #pragma omp parallel for
11 for (i=0; i<n; i++)
12 {
13 Y[i] = alpha * X[i] + Y[i];
14 }
15 }

Only one line of the function body, line 13, is the algorithm itself, while all surrounding lines represent the paral-
lelization strategy.

CUDA, OpenCL and other libraries allow, at least to some degree, to separate the algorithm from the parallelization
strategy. They define the concept of a kernel representing the algorithm itself which is then parallelized depending
on the underlying hardware. The AXPY CUDA kernel source code shown in figure consists only of the code of
one single iteration.

1 template<
2 typename TIdx,
3 typename TElem>
4 __global__ void axpyCUDA(
5 TIdx const n,
6 TElem const alpha,
7 TElem const * const X,
8 TElem * const Y)
9 {

10 TIdx const i(blockIdx.x*blockDim.x + threadIdx.x)
11 if(i < n)
12 {
13 Y[i] = alpha * X[i] + Y[i];
14 }
15 }

On the other hand the CUDA implementation is bloated with code handling the inherent blocking scheme. Even
if the algorithm does not utilize blocking, as it is the case here, the algorithm writer has to calculate the global
index of the current thread by hand (line 10). Furthermore, to support vectors larger then the predefined maximum
number of threads per block (1024 for current CUDA devices), multiple blocks have to be used. When the number
of blocks does not divide the number of vector elements, it has to be assured that the threads responsible for the
vector elements behind the given length, do not access the memory to prevent a possible memory access error.

By using the kernel concept, the parallelization strategy, whether all elements are executed in sequential order, in
parallel or blocked is not hard coded into the algorithm itself. The possibly multidimensional nested loops do not
have to be written by the user. For example, six loops would be required to emulate the CUDA execution pattern
with a grid of blocks consisting of threads.

Furthermore the kernel concept breaks the algorithm down to the per element level. Recombining multiple kernel
iterations to loop over lines, columns, blocks or any other structure is always possible by changing the calling code
and does not require a change of the kernel. In contrast, by using OpenMP this would not be possible. Therefore
the alpaka interface builds on the kernel concept, being the body of the corresponding standard for loop executed
in each thread.
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7.9 Execution Domain Specifications

CUDA requires the user to annotate its functions with execution domain specifications. Functions that can only be
executed on the GPU have to be annotated with __device__, functions that can be executed on the host and on
the GPU have to be annotated with __host__ __device__ and host only functions can optionally be annotated
with __host__. The nvcc CUDA compiler uses these annotations to decide with which back-ends a function has to
be compiled. Depending on the compiler in use, alpaka defines the macros ALPAKA_FN_HOST, ALPAKA_FN_ACC
and ALPAKA_FN_HOST_ACC with the identical meaning which can be used in the same positions. When the CUDA
compiler is used, they are defined to their CUDA equivalents, else they are empty.

7.10 Kernel Function

7.10.1 Requirements

• User kernels should be implemented independent of the accelerator.

• A user kernel has to have access to accelerator methods (synchronization within blocks, index retrieval, . . . ).

• For usage with CUDA, the kernel methods have to be attributed with __device__ __host__.

• The user kernel has to fulfill std::is_trivially_copyable because only such objects can be copied into
CUDA device memory. A trivially copyable class is a class that #. Has no non-trivial copy constructors(this
also requires no virtual functions or virtual bases) #. Has no non-trivial move constructors #. Has no non-
trivial copy assignment operators #. Has no non-trivial move assignment operators #. Has a trivial destructor

• For the same reason all kernel parameters have to fulfill std::is_trivially_copyable, too.

7.10.2 Implementation Variants

There are two possible ways to tell the kernel about the accelerator type:

1. The kernel is templated on the accelerator type . . .

• (+) This allows users to specialize them for different accelerators. (Is this is really necessary or desired?)

• (-) The kernel has to be a class template. This does not allow C++ lambdas to be used as kernels
because they are no templates themselves (but only their operator() can be templated).

• (-) This prevents the user from instantiating an accelerator independent kernel before executing it.
Because the memory layout in inheritance hierarchies is undefined a simple copy of the user kernel
or its members to its specialized type is not possible platform independently. This would require a
copy from UserKernel<TDummyAcc> to UserKernel<TAcc> to be possible. The only way to allow
this would be to require the user to implement a templated copy constructor for every kernel. This is
not allowed for kernels that should be copyable to a CUDA device because std::is_trivially_copyable
requires the kernel to have no non-trivial copy constructors.

a) . . . and inherits from the accelerator.

• (-) The kernel itself has to inherit at least protected from the accelerator to allow the Ker-
nelExecutor to access the Accelerator.

• (-) How do accelerator functions called from the kernel (and not within the kernel class itself)
access the accelerator methods?

Casting this to the accelerator type and giving it as parameter is too much to require from the user.

b) . . . and the operator() has a reference to the accelerator as parameter.

• (+) This allows to use the accelerator in functions called from the kernel (and not within the kernel
class itself) to access the accelerator methods in the same way the kernel entry point function can.
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• (-) This would require an additional object (the accelerator) in device memory taking up valuable CUDA
registers (opposed to the inheritance solution). At least on CUDA all the accelerator functions could
be inlined nevertheless.

2. The operator() is templated on the accelerator type and has a reference to the accelerator as parameter.

• (+) The kernel can be an arbitrary function object with ALPAKA_FN_HOST_ACC attributes.

• (+) This would allow to instantiate the accelerator independent kernel and set its members before execution.

• (+/-) usable with polymorphic lambdas.

• (-) The operator() could be overloaded on the accelerator type but there is no way to specialize the whole
kernel class itself, so it always has the same members.

• (-) This would require an additional object (the accelerator) in device memory taking up valuable CUDA
registers (opposed to the inheritance solution). At least on CUDA all the accelerator functions could be
inlined nevertheless.

Currently we implement version 2.

7.10.3 Implementation Notes

Unlike CUDA, the alpaka library does not differentiate between the kernel function that represents the entry point
and other functions that can be executed on the accelerator. The entry point function that has to be annotated with
__global__ in CUDA is internal to the alpaka CUDA back-end and is not exposed to the user. It directly calls
into the user supplied kernel function object whose invocation operator is declared with ALPAKA_FN_ACC, which
equals __device__ in CUDA. In this respect there is no difference between the kernel entry point function and
any other accelerator function in alpaka.

The operator() of the kernel function object has to be const. This is especially important for the CUDA back-
end, as it could possibly use the constant memory of the GPU to store the function object. The constant memory
is a fast, cached, read-only memory that is beneficial when all threads uniformly read from the same address at the
same time. In this case it is as fast as a read from a register.

7.10.4 Access to Accelerator-Dependent Functionality

There are two possible ways to implement access to accelerator dependent functionality inside a kernel:

• Making the functions/templates members of the accelerator (maybe by inheritance) and calling them like
acc.syncBlockThreads() or acc.template getIdx<Grid, Thread, Dim1>(). This would require
the user to know and understand when to use the template keyword inside dependent type object function
calls.

• The functions are only light wrappers around traits that can be specialized taking the accelerator as first value
(it can not be the last value because of the potential use of variadic arguments). The resulting code would
look like sync(acc) or getIdx<Grid, Thread, Dim1>(acc). Internally these wrappers would call trait
templates that are specialized for the specific accelerator e.g. template<typename TAcc> Sync{...};

The second version is easier to understand and usually shorter to use in user code.
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7.11 Index and Work Division

CUDA requires the user to calculate the global index of the current thread within the grid by hand (already
shown as axpyCUDA). On the contrary, OpenCL provides the methods get_global_size, get_global_id,
get_local_size and get_local_id. Called with the required dimension, they return the corresponding lo-
cal or global index or extent (size). In alpaka this idea is extended to all dimensions. To unify the method interface
and to avoid confusion between the differing terms and meanings of the functions in OpenCL and CUDA, in alpaka
these methods are template functions.

7.12 Block Shared Memory

7.12.1 Static Block Shared Memory

The size of block shared memory that is allocated inside the kernel is required to be given as compile time constant.
This is due to CUDA not allowing to allocate block shared memory inside a kernel at runtime.

7.12.2 Dynamic Block Shared Memory

The size of the external block shared memory is obtained from a trait that can be specialized for each kernel.
The trait is called with the current kernel invocation parameters and the block-element extent prior to each kernel
execution. Because the block shared memory size is only ever constant or dependent on the block-element extent
or the parameters of the invocation this has multiple advantages:

• It forces the separation of the kernel invocation from the calculation of the required block shared memory
size.

• It lets the user write this calculation once instead of multiple times spread across the code.
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CHAPTER

EIGHT

MAPPING ONTO SPECIFIC HARDWARE ARCHITECTURES

By providing an accelerator independent interface for kernels, their execution and memory accesses at different
hierarchy levels, alpaka allows the user to write accelerator independent code that does not neglect performance.

The mapping of the decomposition to the execution environment is handled by the back-ends provided by the al-
paka library as well as user defined back-ends. A computation that is described with a maximum of the parallelism
available in the redundant hierarchical parallelism abstraction can not be mapped one to one to any existing hard-
ware. GPUs do not have vector registers for float or double types. Therefore, the element level is often omitted
on CUDA accelerators. CPUs in turn are not (currently) capable of running thousands of threads concurrently and
do not have equivalently fast inter-thread synchronization and shared memory access as GPUs do.

A major point of the redundant hierarchical parallelism abstraction is to ignore specific unsupported levels and
utilize only the ones supported on a specific accelerator. This allows a mapping to various current and future
accelerators in a variety of ways enabling optimal usage of the underlying compute and memory capabilities.

The grid level is always mapped to the whole device being in consideration. The scheduler can always execute
multiple kernel grids from multiple queues in parallel by statically or dynamically subdividing the available re-
sources. However, this will only ever simplify the mapping due to less available processing units. Furthermore,
being restricted to less resources automatically improves the locality of data due to spatial and temporal locality
properties of the caching hierarchy.

8.1 x86 CPUs

There are multiple possible ways to map the alpaka abstraction to x86 CPUs. The following figure shows the com-
pute and memory hierarchy of a dual-socket (package) node with dual-core CPUs and symmetric multithreading
(Hyper-Threading). Through symmetric multithreading (Hyper-Threading) each core represents two processing
units.
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8.1.1 Thread

Mapping the thread level directly to the processing units is the most trivial part of the assignment of hierarchy
levels to hardware units. However, the block and warp levels could be mapped to hardware components in different
ways with varying advantages and disadvantages.

8.1.2 Warp

Even though a warp seems to be identical to a vector register, because both execute a single uniform instruction on
multiple data elements, they are not the same. Warps can handle branches with divergent control flows of multiple
threads. There is no equivalent hardware unit in a CPU supporting this. Therefore, the warp level can not be utilized
on CPUs leading to a one-to-one mapping of threads to warps which does not violate the rules of the abstraction.

8.1.3 Block

One Block Per Node

By combining all processing units (possibly Hyper-Threads) of all processors on a node into one block, the number
of synchronizing and communicating threads can be enlarged. This high possible thread count would simplify the
implementation of some types of algorithms but introduces performance issues on multi-core nodes. The shared
memory between all cores on a node is the RAM. However, the RAM and the communication between the sockets
is far too slow for fine-grained communication in the style of CUDA threads.
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One Block Per Socket

If each processor on each socket would concurrently execute one block, the L3 cache would be used as the fast
shared memory. Although this is much better then to use the RAM, there is still a problem. Regions of the global
memory and especially from the shared memory that are accessed are automatically cached in the L1 and / or
L2 caches of each core. Not only the elements which are directly accessed will be cached but always the whole
cache line they lie in. Cache lines typically have a size of 64 Bytes on modern x86 architectures. This leads to, for
example, eight double precision floating point numbers being cached at once even though only one value really is
required. As long as these values are only read there is no problem. However, if one thread writes to a value that is
also cached on other cores, all such cache copies have to be invalidated. This results in a lot of cache and bus traffic.
Due to the hierarchical decomposition of the grid of threads reflecting the data elements, neighboring threads are
always combined into a common block. By mapping a block to a socket, threads that are executed concurrently
always have very close indices into the grid. Therefore, the elements that are read and written by the threads are
always very close together within the memory and will most probably share a cache line. This property is exploited
on CUDA GPUs, where memory accesses within a warp are combined into one large transaction. However, when
multiple threads from multiple CPU cores write to different elements within a cache line, this advantage is reversed
into its opposite. This pattern non-intuitively leads to heavy performance degradation and is called false-sharing.

One Block Per Core

The best compromise between a high number of threads per block and a fast communication between the threads is
to map a block directly to a CPU core. Each processing unit (possibly a Hyper-Thread) executes one or more threads
of our hierarchical abstraction while executing multiple elements locally either by processing them sequentially
or in a vectorized fashion. This possible mapping of blocks, threads and elements to the compute and memory
hierarchy of a dual-socket node with dual-core CPUs and symmetric multithreading is illustrated in the following
figure. ![x86_cpu](x86/x86_cpu_mapping.png)

One Block Per Thread

If there is no symmetric multithreading or if it is desired, it is also possible to implement a mapping of one block
with exactly one thread for each processing unit. This allows to completely remove the synchronization overhead
for tasks where this is not required at all.

8.1.4 Threading Mechanisms

The mapping of threads to processing units is independent of the threading mechanism that is used. As long as the
thread affinity to cores can be set correctly, OpenMP, pthread, std::thread or other libraries and APIs can be used
interchangeably to implement various alpaka back-ends. They all have different advantages and disadvantages.
Real operating system threads like pthread, std::thread and others have a high cost of thread creation and thread
change because their default stack size amounts to multiple megabytes. OpenMP threads on the other hand are
by default much more lightweight. However, they are arbitrarily limited by the runtime implementation in the
maximum number of concurrent threads a machine supports. All of the previous methods have non-deterministic
thread changes in common. Therefore it is not possible to decide the order in which threads within a block are
processed, which could be a good optimization opportunity.

To allow blocks to contain more threads then the number of processing units each core provides, it is possible
to simply start more threads then processing units are available. This is called oversubscription. Those threads
can be bound to the correct cores and by relying on the operating system thread scheduler, they are preemptively
multitasked while sharing a single cache and thereby avoiding false-sharing. However, this is not always beneficial
because the cost of thread changes by the kernel-mode scheduler should not be underestimated.
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8.2 GPUs (CUDA/HIP)

Mapping the abstraction to GPUs supporting CUDA and HIP is straightforward because the hierarchy levels are
identical up to the element level. So blocks of warps of threads will be mapped directly to their CUDA/HIP
equivalent.

The element level is supported through an additional run-time variable containing the extent of elements per thread.
This variable can be accessed by all threads and should optimally be placed in constant device memory for fast
access.
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CHAPTER

NINE

CMAKE ARGUMENTS

Alpaka configures a lot of its functionality at compile time. Therefore a lot of compiler and link flags are needed,
which are set by CMake arguments. The beginning of this section introduces the general Alpaca flag. The last
parts of the section describe back-end specific flags.

Hint: To display the cmake variables with value and type in the build folder of your project, use cmake -LH
<path-to-build>.

Table of back-ends

• CPU Serial

• C++ Threads

• Intel TBB

• OpenMP 2 Grid Block

• OpenMP 2 Block Thread

• CUDA

• HIP

9.1 Common

alpaka_CXX_STANDARD

Set the C++ standard version.

alpaka_BUILD_EXAMPLES

Build the examples.

BUILD_TESTING

Build the testing tree.

alpaka_INSTALL_TEST_HEADER

Install headers of the namespace alpaka::test.
Attention, headers are not designed for production code.
They should only be used for prototyping or creating tests that use alpaka
functionality.

alpaka_DEBUG
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Set Debug level:

0 - Is the default value. No additional logging.
1 - Enables some basic flow traces.
2 - Display as many information as possible. Especially pointers, sizes and other

parameters of copies, kernel invocations and other operations will be␣
→˓printed.

alpaka_USE_INTERNAL_CATCH2

Use internally shipped Catch2.

alpaka_FAST_MATH

Enable fast-math in kernels.

Warning: The default value is changed to “OFF” with alpaka 0.7.0.

alpaka_FTZ

Set flush to zero for GPU.

alpaka_DEBUG_OFFLOAD_ASSUME_HOST

Allow host-only contructs like assert in offload code in debug mode.

alpaka_USE_MDSPAN

Enable/Disable the use of `std::experimental::mdspan`:

"OFF" - Disable mdspan
"SYSTEM" - Enable mdspan and acquire it via `find_package` from your system
"FETCH" - Enable mdspan and download it via CMake's `FetchContent` from GitHub.␣
→˓The dependency will not be installed when you install alpaka.

9.2 CPU Serial

alpaka_ACC_CPU_B_SEQ_T_SEQ_ENABLE

Enable the serial CPU back-end.

alpaka_BLOCK_SHARED_DYN_MEMBER_ALLOC_KIB

Kibibytes (1024B) of memory to allocate for block shared memory for backends
requiring static allocation.
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9.3 C++ Threads

alpaka_ACC_CPU_B_SEQ_T_THREADS_ENABLE

Enable the threads CPU block thread back-end.

9.4 Intel TBB

alpaka_ACC_CPU_B_TBB_T_SEQ_ENABLE

Enable the TBB CPU grid block back-end.

alpaka_BLOCK_SHARED_DYN_MEMBER_ALLOC_KIB

Kibibytes (1024B) of memory to allocate for block shared memory for backends
requiring static allocation.

9.5 OpenMP 2 Grid Block

alpaka_ACC_CPU_B_OMP2_T_SEQ_ENABLE

Enable the OpenMP 2.0 CPU grid block back-end.

alpaka_BLOCK_SHARED_DYN_MEMBER_ALLOC_KIB

Kibibytes (1024B) of memory to allocate for block shared memory for backends
requiring static allocation.

9.6 OpenMP 2 Block thread

alpaka_ACC_CPU_B_SEQ_T_OMP2_ENABLE

Enable the OpenMP 2.0 CPU block thread back-end.

9.7 CUDA

alpaka_ACC_GPU_CUDA_ENABLE

Enable the CUDA GPU back-end.

alpaka_ACC_GPU_CUDA_ONLY_MODE

Only back-ends using CUDA can be enabled in this mode (This allows to mix
alpaka code with native CUDA code).

CMAKE_CUDA_ARCHITECTURES

Set the GPU architecture: e.g. "35;72".

CMAKE_CUDA_COMPILER
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Set the CUDA compiler: "nvcc" (default) or "clang++".

CUDACXX

Select a specific CUDA compiler version.

alpaka_CUDA_KEEP_FILES

Keep all intermediate files that are generated during internal compilation
steps 'CMakeFiles/<targetname>.dir'.

alpaka_CUDA_EXPT_EXTENDED_LAMBDA

Enable experimental, extended host-device lambdas in NVCC.

alpaka_RELOCATABLE_DEVICE_CODE

Enable relocatable device code. Note: This affects all targets in the
CMake scope where ``alpaka_RELOCATABLE_DEVICE_CODE`` is set. For the
effects on CUDA code see NVIDIA's blog post:

https://developer.nvidia.com/blog/separate-compilation-linking-cuda-device-code/

alpaka_CUDA_SHOW_CODELINES

Show kernel lines in cuda-gdb and cuda-memcheck. If alpaka_CUDA_KEEP_FILES
is enabled source code will be inlined in ptx.
One of the added flags is: --generate-line-info

alpaka_CUDA_SHOW_REGISTER

Show the number of used kernel registers during compilation and create PTX.

9.8 HIP

To enable the HIP back-end please extend CMAKE_PREFIX_PATH with the path to the HIP installation.

alpaka_ACC_GPU_HIP_ENABLE

Enable the HIP back-end (all other back-ends must be disabled).

alpaka_ACC_GPU_HIP_ONLY_MODE

Only back-ends using HIP can be enabled in this mode.

GPU_TARGETS

Set the GPU architecture: e.g. "gfx900;gfx906;gfx908".

A list of the GPU architectures can be found here.

alpaka_HIP_KEEP_FILES

Keep all intermediate files that are generated during internal compilation
steps 'CMakeFiles/<targetname>.dir'.

alpaka_RELOCATABLE_DEVICE_CODE
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Enable relocatable device code. Note: This affects all targets in the
CMake scope where ``alpaka_RELOCATABLE_DEVICE_CODE`` is set. For the
effects on HIP code see the NVIDIA blog post linked below; HIP follows
CUDA's behaviour.

https://developer.nvidia.com/blog/separate-compilation-linking-cuda-device-code/

9.9 SYCL

alpaka_RELOCATABLE_DEVICE_CODE

Enable relocatable device code. Note: This affects all targets in the
CMake scope where ``alpaka_RELOCATABLE_DEVICE_CODE`` is set. For the
effects on SYCL code see Intel's documentation:

https://www.intel.com/content/www/us/en/docs/dpcpp-cpp-compiler/developer-guide-reference/2023-2/
fsycl-rdc.html
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CHAPTER

TEN

COMPILER SPECIFICS

Alpaka supports a large number of different compilers. Each of the compilers has its own special features. This
page explains some of these specifics.

10.1 Choosing the correct Standard Library in Clang

Clang supports both, libstdc++ shipped with the GNU GCC toolchain and libc++, LLVM’s own implementation
of the C++ standard library. By default, clang and all clang-based compilers, such as the hipcc, use libstdc++
(GNU GCC). If more than one GCC version is installed, it is not entirely clear which version of libstdc++ is
selected. The following code can be used to check which standard library and version clang is using by default
with the current setup.

#include <iostream>

int main(){
#ifdef _GLIBCXX_RELEASE
std::cout << "use libstdc++ (GNU GCC's standard library implementation)" <<␣

→˓std::endl;
std::cout << "version: " << _GLIBCXX_RELEASE << std::endl;
#endif

#ifdef _LIBCPP_VERSION
std::cout << "use libc++ (LLVM's standard library implementation)" << std::endl;
std::cout << "version: " << _LIBCPP_VERSION << std::endl;
#endif

}

The command clang -v ... shows the include paths and also gives information about the standard library used.

10.1.1 Choose a specific libstdc++ version

Clang provides the argument --gcc-toolchain=<path> which allows you to select the path of a GCC installa-
tion. For example, if you built the GCC compiler from source, you can select the installation prefix, which is the
base folder with the subfolders include, lib and so on.

If you are using CMake, you can set the --gcc-toolchain flag via the following CMake command line argument:

• -DCMAKE_CXX_FLAGS="--gcc-toolchain=<path>" if you use Clang as compiler for CPU backends or
the HIP backend.

• -DCMAKE_CUDA_FLAGS="--gcc-toolchain=<path>" if you use Clang as CUDA compiler.

Hint: If you are using Ubuntu and install a new gcc version via apt, it is not possible to select a specific gcc version
because apt installs all headers and shared libraries in subfolders of /usr/include and /usr/lib. Therefore,
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you can only use the /usr base path and Clang will automatically select one of the installed libstdc++ versions.

Hint: If you installed Clang/LLVM with spack and a gcc compiler, the Clang compiler will use the libstdc++
of the compiler used to build Clang/LLVM.

10.1.2 Selecting libc++

libc++ can be used if you set the compiler flag -stdlib=libc++.

If you are using CMake, you can select libc++ via the following CMake command line argument:

• -DCMAKE_CXX_FLAGS="-stdlib=libc++" if you use Clang as compiler for CPU backends or the HIP
backend.

• -DCMAKE_CUDA_FLAGS="-stdlib=libc++" if you use Clang as CUDA compiler.
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CHAPTER

ELEVEN

SIMILAR PROJECTS

11.1 KOKKOS

See also:

• https://www.xsede.org/documents/271087/586927/Edwards-2013-XSCALE13-Kokkos.pdf

• https://trilinos.org/oldsite/events/trilinos_user_group_2013/presentations/2013-11-TUG-Kokkos-Tutorial.
pdf

• https://on-demand.gputechconf.com/supercomputing/2013/presentation/SC3103_Towards-Performance-
Portable-Applications-Kokkos.pdf

• https://dx.doi.org/10.3233/SPR-2012-0343

Kokkos provides an abstract interface for portable, performant shared memory-programming. It is a C++ library
that offers parallel_for, parallel_reduce and similar functions for describing the pattern of the parallel tasks.
The execution policy determines how the threads are executed. For example, this influences the sizes of blocks
of threads or if static or dynamic scheduling should be used. The library abstracts the kernel as a function object
that can not have any user defined parameters for its operator(). Arguments have to be stored in members of the
function object coupling algorithm and data together. KOKKOS provides both, abstractions for parallel execution
of code and data management. Multidimensional arrays with a neutral indexing and an architecture dependent
layout are available, which can be used, for example, to abstract the underlying hardwares preferred memory access
scheme that could be row-major, column-major or even blocked.

11.2 Thrust

Thrust is a parallel algorithms library resembling the C++ Standard Template Library (STL). It allows to select
either the CUDA, TBB or OpenMP back-end at make-time. Because it is based on generic host_vector and
device_vector container objects, it is tightly coupling the data structure and the parallelization strategy. There
exist many similar libraries such as ArrayFire (CUDA, OpenCL, native C++), VexCL (OpenCL, CUDA), ViennaCL
(OpenCL, CUDA, OpenMP) and hemi (CUDA, native C++).

See also:

• Phalanx See here It is very similar to alpaka in the way it abstracts the accelerators. C++ Interface provides
CUDA, OpenMP, and GASNet back-ends

• Aura

• Intel TBB

• UPC++
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CHAPTER

TWELVE

BACK-ENDS

12.1 Accelerator Implementations

The table shows which native implementation or information is used to represent an alpaka functionality.
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alpaka Serial std::thread OpenMP 2.0 OpenMP 4.0 CUDA
9.0+

Devices Host
Core

Host Cores Host Cores Host Cores NVIDIA
GPUs

Lib/API standard
C++

std::thread OpenMP 2.0 OpenMP 4.0 CUDA
9.0+

Kernel execu-
tion

sequen-
tial

std::thread(kernel)omp_set_dynamic(0),
#pragma
omp parallel
num_threads(iNumKernelsInBlock)

#pragma omp tar-
get, #pragma omp
teams num_teams(. . . )
thread_limit(. . . ),
#pragma omp distribute,
#pragma omp parallel
num_threads(. . . )

cuda-
Config-
ureCall,
cudaSe-
tupAr-
gument,
cud-
aLaunch

Execution
strategy grid-
blocks

sequen-
tial

sequential sequential undefined undefined

Execution
strategy
block-kernels

sequen-
tial

preemptive
multitasking

preemptive mul-
titasking

preemptive multitasking lock-step
within
warps

getIdx emu-
lated

block-kernel:
mapping of
std::this_thread::get_id()
grid-block:
member vari-
able

block-kernel:
omp_get_num_threads()
to 3D index map-
ping grid-block:
member variable

block-kernel:
omp_get_num_threads() to
3D index mapping grid-
block: member variable

threadIdx,
blockIdx

getExtents member
vari-
ables

member vari-
ables

member vari-
ables

member variables gridDim,
blockDim

getBlock-
SharedMem-
DynSizeBytes

allo-
cated in
memory
prior to
kernel
execu-
tion

allocated in
memory prior
to kernel exe-
cution

allocated in
memory prior to
kernel execution

allocated in memory prior to
kernel execution

__shared__

allocBlock-
SharedMem

master
thread
allocates

syncBlockKer-
nels -> master
thread allocates
-> syncBlock-
Kernels

syncBlockKer-
nels -> master
thread allocates
-> syncBlock-
Kernels

syncBlockKernels -> mas-
ter thread allocates ->
syncBlockKernels

__shared__

syncBlock-
Kernels

not re-
quired

barrier #pragma omp
barrier

#pragma omp barrier __sync-
threads

atomicOp hier-
archy
de-
pended

std::lock_guard<
std::mutex >

#pragma omp
critical

#pragma omp critical atom-
icXXX

AL-
PAKA_FN_HOST_ACC,
AL-
PAKA_FN_ACC,
AL-
PAKA_FN_HOST

inline inline inline inline __de-
vice__,
__host__,
__forcein-
line__
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12.2 Serial

The serial accelerator only allows blocks with exactly one thread. Therefore it does not implement real synchro-
nization or atomic primitives.

12.3 Threads

12.3.1 Execution

To prevent recreation of the threads between execution of different blocks in the grid, the threads are stored inside
a thread pool. This thread pool is local to the invocation because making it local to the KernelExecutor could mean
a heavy memory usage and lots of idling kernel-threads when there are multiple KernelExecutors around. Because
the default policy of the threads in the pool is to yield instead of waiting, this would also slow down the system
immensely.

12.4 OpenMP

12.4.1 Execution

Parallel execution of the kernels in a block is required because when syncBlockThreads is called all of them have to
be done with their work up to this line. So we have to spawn one real thread per kernel in a block. omp for is not
useful because it is meant for cases where multiple iterations are executed by one thread but in our case a 1:1 map-
ping is required. Therefore we use omp parallel with the specified number of threads in a block. Another
reason for not using omp for like #pragma omp parallel for collapse(3) num_threads(blockDim.
x*blockDim.y*blockDim.z) is that #pragma omp barrier used for intra block synchronization is not allowed
inside omp for blocks.

Because OpenMP is designed for a 1:1 abstraction of hardware to software threads, the block size is restricted by
the number of OpenMP threads allowed by the runtime. This could be as little as 2 or 4 kernels but on a system
with 4 cores and hyper-threading OpenMP can also allow 64 threads.

12.4.2 Index

OpenMP only provides a linear thread index. This index is converted to a 3 dimensional index at runtime.

12.4.3 Atomic

We can not use #pragma omp atomic because braces or calling other functions directly after #pragma omp
atomic are not allowed. Because we are implementing the CUDA atomic operations which return the old value,
this requires #pragma omp critical to be used. omp_set_lock is an alternative but is usually slower.
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12.5 CUDA

Nearly all CUDA functionality can be directly mapped to alpaka function calls. A major difference is that CUDA
requires the block and grid sizes to be given in (x, y, z) order. alpaka uses the mathematical C/C++ array indexing
scheme [z][y][x]. In both cases x is the innermost / fast running index.

Furthermore alpaka does not require the indices and extents to be 3-dimensional. The accelerators are templatized
on and support arbitrary dimensionality. NOTE: Currently the CUDA implementation is restricted to a maximum
of 3 dimensions!

NOTE: You have to be careful when mixing alpaka and non alpaka CUDA code. The CUDA-accelerator back-end
can change the current CUDA device and will NOT set the device back to the one prior to the invocation of the
alpaka function.

Function Attributes

Depending on the cmake argument ALPAKA_ACC_GPU_CUDA_ONLY_MODE the function attributes are defined dif-
ferently.

ALPAKA_ACC_GPU_CUDA_ONLY_MODE=OFF (default)

CUDA alpaka
__host__ ALPAKA_FN_HOST
__device__ –
__global__ –
__host__ __device__ ALPAKA_FN_HOST_ACC, ALPAKA_FN_ACC

ALPAKA_ACC_GPU_CUDA_ONLY_MODE=ON

CUDA alpaka
__host__ ALPAKA_FN_HOST
__device__ ALPAKA_FN_ACC
__global__ –
__host__ __device__ ALPAKA_FN_HOST_ACC

Note: There is no alpaka equivalent to __global__ because the design of alpaka does not allow it. When running
a alpaka kernel, alpaka creates a __global__ kernel that performs some setup functions, such as creating the acc
object, and then runs the user kernel, which must be a CUDA __device__ function.

Note: You can not call CUDA-only methods, except when ALPAKA_ACC_GPU_CUDA_ONLY_MODE is enabled.

Note: When calling a constexpr function from inside a device function, also mark the called function as a device
function, e.g. by prepending ALPAKA_FN_ACC.

Note that some compilers do that by default, but not all. For details please refer to #1580 .

Memory

CUDA alpaka
__shared__ alpaka::declareSharedVar<std::uint32_t, __COUNTER__>(acc)
__constant__ ALPAKA_STATIC_ACC_MEM_CONSTANT
__device__ ALPAKA_STATIC_ACC_MEM_GLOBAL

58 Chapter 12. Back-ends

https://github.com/alpaka-group/alpaka/issues/1580


alpaka Documentation, Release 1.0.0-develop

template<typename T, std::size_t TuniqueId, typename TBlockSharedMemSt>
ALPAKA_NO_HOST_ACC_WARNING ALPAKA_FN_ACC auto alpaka::declareSharedVar(TBlockSharedMemSt

const
&block-
Shared-
MemSt) ->
T&

Declare a block shared variable.

The variable is uninitialized and not default constructed! The variable can be accessed by all threads within
a block. Access to the variable is not thread safe.

Template Parameters

• T – The element type.

• TuniqueId – id those is unique inside a kernel

• TBlockSharedMemSt – The block shared allocator implementation type.

Parameters
blockSharedMemSt – The block shared allocator implementation.

Returns
Uninitialized variable stored in shared memory.

ALPAKA_STATIC_ACC_MEM_CONSTANT

This macro defines a variable lying in constant accelerator device memory.

Example: ALPAKA_STATIC_ACC_MEM_CONSTANT int i;

Those variables behave like ordinary variables when used in file-scope. They have external linkage (are
accessible from other compilation units). If you want to access it from a different compilation unit, you have
to declare it as extern: extern ALPAKA_STATIC_ACC_MEM_CONSTANT int i; Like ordinary variables,
only one definition is allowed (ODR) Failure to do so might lead to linker errors.

In contrast to ordinary variables, you can not define such variables as static compilation unit local variables
with internal linkage because this is forbidden by CUDA.

Attention
It is not allowed to initialize the variable together with the declaration. To initialize the variable al-
paka::createStaticDevMemView and alpaka::memcpy must be used.

ALPAKA_STATIC_ACC_MEM_CONSTANT int foo;

void initFoo() {
auto extent = alpaka::Vec<alpaka::DimInt<1u>, size_t>{1};
auto viewFoo = alpaka::createStaticDevMemView(&foo, device, extent);
int initialValue = 42;
alpaka::ViewPlainPtr<DevHost, int, alpaka::DimInt<1u>, size_t> bufHost(&

→˓initialValue, devHost, extent);
alpaka::memcpy(queue, viewGlobalMemUninitialized, bufHost, extent);

}

ALPAKA_STATIC_ACC_MEM_GLOBAL

This macro defines a variable lying in global accelerator device memory.

Example: ALPAKA_STATIC_ACC_MEM_GLOBAL int i;

Those variables behave like ordinary variables when used in file-scope. They have external linkage (are
accessible from other compilation units). If you want to access it from a different compilation unit, you have
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to declare it as extern: extern ALPAKA_STATIC_ACC_MEM_GLOBAL int i; Like ordinary variables,
only one definition is allowed (ODR) Failure to do so might lead to linker errors.

In contrast to ordinary variables, you can not define such variables as static compilation unit local variables
with internal linkage because this is forbidden by CUDA.

Attention
It is not allowed to initialize the variable together with the declaration. To initialize the variable al-
paka::createStaticDevMemView and alpaka::memcpy must be used.

ALPAKA_STATIC_ACC_MEM_GLOBAL int foo;

void initFoo() {
auto extent = alpaka::Vec<alpaka::DimInt<1u>, size_t>{1};
auto viewFoo = alpaka::createStaticDevMemView(&foo, device, extent);
int initialValue = 42;
alpaka::ViewPlainPtr<DevHost, int, alpaka::DimInt<1u>, size_t> bufHost(&

→˓initialValue, devHost, extent);
alpaka::memcpy(queue, viewGlobalMemUninitialized, bufHost, extent);

}

Index / Work Division

CUDA alpaka
threadIdx alpaka::getIdx<alpaka::Block, alpaka::Threads>(acc)
blockIdx alpaka::getIdx<alpaka::Grid, alpaka::Blocks>(acc)
blockDim alpaka::getWorkDiv<alpaka::Block, alpaka::Threads>(acc)
gridDim alpaka::getWorkDiv<alpaka::Grid, alpaka::Blocks>(acc)
warpSize alpaka::warp::getSize(acc)

Types

12.5.1 CUDA Runtime API

The following tables list the functions available in the CUDA Runtime API and their equivalent alpaka functions:

Device Management
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CUDA alpaka
cudaChooseDevice –
cudaDeviceGetAttribute –
cudaDeviceGetByPCIBusId –
cudaDeviceGetCacheConfig –
cudaDeviceGetLimit –
cudaDeviceGetP2PAttribute –
cudaDeviceGetPCIBusId –
cudaDeviceGetSharedMemConfig –
cudaDeviceGetQueuePriorityRange –
cudaDeviceReset alpaka::reset(device)
cudaDeviceSetCacheConfig –
cudaDeviceSetLimit –
cudaDeviceSetSharedMemConfig –
cudaDeviceSynchronize void alpaka::wait(device)
cudaGetDevice n/a (no current device)
cudaGetDeviceCount std::sizet alpaka::getDevCount< TPlatform >()
cudaGetDeviceFlags –
cudaGetDeviceProperties alpaka::getAccDevProps(dev) (Only some properties available)
cudaIpcCloseMemHandle –
cudaIpcGetEventHandle –
cudaIpcGetMemHandle –
cudaIpcOpenEventHandle –
cudaIpcOpenMemHandle –
cudaSetDevice n/a (no current device)
cudaSetDeviceFlags –
cudaSetValidDevices –

Error Handling

CUDA alpaka
cudaGetErrorName n/a (handled internally, available in exception message)
cudaGetErrorString n/a (handled internally, available in exception message)
cudaGetLastError n/a (handled internally)
cudaPeekAtLastError n/a (handled internally)

Queue Management
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CUDA alpaka
cudaLaunchHostFunc
cudaStreamAddCallback

alpaka::enqueue(queue, [](){dosomething();})

cudaStreamAttachMemAsync –
cudaStreamCreate

• queue=alpaka::QueueCudaRtNonBlocking(device);
• queue=alpaka::QueueCudaRtBlocking(device);

cudaStreamCreateWithFlags see cudaStreamCreate (cudaStreamNonBlocking hard
coded)

cudaStreamCreateWithPriority –
cudaStreamDestroy n/a (Destructor)
cudaStreamGetFlags –
cudaStreamGetPriority –
cudaStreamQuery bool alpaka::empty(queue)
cudaStreamSynchronize void alpaka::wait(queue)
cudaStreamWaitEvent void alpaka::wait(queue, event)

Event Management

CUDA alpaka
cudaEventCreate alpaka::Event< TQueue > event(dev);
cudaEventCreateWithFlags –
cudaEventDestroy n/a (Destructor)
cudaEventElapsedTime –
cudaEventQuery bool alpaka::isComplete(event)
cudaEventRecord void alpaka::enqueue(queue, event)
cudaEventSynchronize void alpaka::wait(event)

Memory Management

Execution Control

CUDA alpaka
cudaFuncGetAttributes –
cudaFuncSetCacheConfig –
cudaFuncSetSharedMemConfig –
cudaLaunchKernel

• alpaka::exec<TAcc>(queue, workDiv, kernel,
params. . . )

• auto byteDynSharedMem = al-
paka::getBlockSharedMemDynSizeBytes(kernel,
. . . )

cudaSetDoubleForDevice n/a (alpaka assumes double support)
cudaSetDoubleForHost n/a (alpaka assumes double support)

Occupancy

CUDA alpaka
cudaOccupancyMaxActiveBlocksPerMultiprocessor –
cudaOccupancyMaxActiveBlocksPerMultiprocessorWithFlags –
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Unified Addressing

CUDA alpaka
cudaPointerGetAttributes –

Peer Device Memory Access

CUDA alpaka
cudaDeviceCanAccessPeer –
cudaDeviceDisablePeerAccess –
cudaDeviceEnablePeerAccess automatically done when required

OpenGL, Direct3D, VDPAU, EGL, Graphics Interoperability

not available

Texture/Surface Reference/Object Management

not available

Version Management

not available

12.6 HIP

Warning: The HIP documentation is outdated and must be overworked.

12.6.1 Current Restrictions on HCC platform

• Workaround for unsupported syncthreads_{count|and|or}.

– Uses temporary shared value and atomics

• Workaround for buggy hipStreamQuery, hipStreamSynchronize.

– Introduces own queue management

– hipStreamQuery and hipStreamSynchronize do not work in multithreaded environment

• Workaround for missing cuStreamWaitValue32.

– Polls value each 10 ms

• Device constant memory not supported yet

• Note that printf in kernels is still not supported in HIP

• Exclude hipMalloc3D and hipMallocPitch when size is zero otherwise they throw an Unknown Error

• TestAccs excludes 3D specialization of HIP back-end for now because verifyBytesSet fails in memView
for 3D specialization

• dim3 structure is not available on device (use alpaka::Vec instead)

• Constructors’ attributes unified with destructors’.

– Host/device signature must match in HIP(HCC)

• A chain of functions must also provide correct host-device signatures

– E.g. a host function cannot be called from a host-device function
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• Recompile your target when HCC linker returned the error: “File format not recognized clang-7: error:
linker command failed with exit code 1”

• If compile-error occurred the linker still may link, but without the device code

• AMD device architecture currently hardcoded in alpakaConfig.cmake

12.6.2 Compiling HIP from Source

Follow HIP Installation guide for installing HIP. HIP requires either nvcc or hcc to be installed on your system (see
guide for further details).

• If you want the HIP binaries to be located in a directory that does not require superuser access, be sure to
change the install directory of HIP by modifying the CMAKE_INSTALL_PREFIX cmake variable.

• Also, after the installation is complete, add the following line to the .profile file in your home directory,
in order to add the path to the HIP binaries to PATH: PATH=$PATH:<path_to_binaries>

git clone --recursive https://github.com/ROCm-Developer-Tools/HIP.git
cd HIP
mkdir -p build
cd build
cmake -DCMAKE_BUILD_TYPE="${CMAKE_BUILD_TYPE}" -DCMAKE_INSTALL_PREFIX=${YOUR_HIP_
→˓INSTALL_DIR} -DBUILD_TESTING=OFF ..
make
make install

• Set the appropriate paths (edit ${YOUR_**} variables)

# HIP_PATH required by HIP tools
export HIP_PATH=${YOUR_HIP_INSTALL_DIR}
# Paths required by HIP tools
export CUDA_PATH=${YOUR_CUDA_ROOT}
# - if required, path to HCC compiler. Default /opt/rocm/hcc.
export HCC_HOME=${YOUR_HCC_ROOT}
# - if required, path to HSA include, lib. Default /opt/rocm/hsa.
export HSA_PATH=${YOUR_HSA_PATH}
# HIP binaries and libraries
export PATH=${HIP_PATH}/bin:$PATH
export LD_LIBRARY_PATH=${HIP_PATH}/lib64:${LD_LIBRARY_PATH}

• Test the HIP binaries

# calls nvcc or hcc
which hipcc
hipcc -V
which hipconfig
hipconfig -v
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12.6.3 Verifying HIP Installation

• If PATH points to the location of the HIP binaries, the following command should list several relevant envi-
ronment variables, and also the selected compiler on your system-\`hipconfig -f\`

• Compile and run the square sample, as pointed out in the original HIP install guide.

12.6.4 Compiling Examples with HIP Back End

As of now, the back-end has only been tested on the NVIDIA platform.

• NVIDIA Platform

– One issue in this branch of alpaka is that the host compiler flags don’t propagate to the device compiler,
as they do in CUDA. This is because a counterpart to the CUDA_PROPAGATE_HOST_FLAGS cmake vari-
able has not been defined in the FindHIP.cmake file. alpaka forwards the host compiler flags in cmake to
the HIP_NVCC_FLAGS cmake variable, which also takes user-given flags. To add flags to this variable,
toggle the advanced mode in ccmake.

12.6.5 Random Number Generator Library rocRAND for HIP Back End

rocRAND provides an interface for HIP, where the cuRAND or rocRAND API is called depending on the chosen
HIP platform (can be configured with cmake in alpaka).

Clone the rocRAND repository, then build and install it

git clone https://github.com/ROCmSoftwarePlatform/rocRAND
cd rocRAND
mkdir -p build
cd build
cmake -DCMAKE_INSTALL_PREFIX=${HIP_PATH} -DBUILD_BENCHMARK=OFF -DBUILD_TEST=OFF -
→˓DCMAKE_MODULE_PATH=${HIP_PATH}/cmake ..
make

The CMAKE_MODULE_PATH is a cmake variable for locating module finding scripts like FindHIP.cmake. The paths
to the rocRAND library and include directories should be appended to the CMAKE_PREFIX_PATH variable.
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The full stack of concepts defined by the alpaka library and their inheritance hierarchy is shown in the third column
of the preceding figure. Default implementations for those concepts can be seen in the blueish columns. The various
accelerator implementations, shown in the lower half of the figure, only differ in some of their underlying concepts
but can share most of the base implementations. The default implementations can, but do not have to be used at
all. They can be replaced by user code in arbitrary granularity. By substituting, for instance, the atomic operation
implementation of an accelerator, the execution can be fine-tuned, to better utilize the hardware instruction set of a
specific processor. However, also complete accelerators, devices and all of the other concepts can be implemented
by the user without the need to change any part of the alpaka library itself. The way this and other things are
implemented is explained in the following paragraphs.
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13.1 Concept Implementations

The alpaka library has been implemented with extensibility in mind. This means that there are no predefined
classes, modeling the concepts, the alpaka functions require as input parameters. They allow arbitrary types as
parameters, as long as they model the required concept.

C++ provides a language inherent object oriented abstraction allowing to check that parameters to a function comply
with the concept they are required to model. By defining interface classes, which model the alpaka concepts, the
user would be able to inherit his extension classes from the interfaces he wants to model and implement the abstract
virtual methods the interfaces define. The alpaka functions in turn would use the corresponding interface types
as their parameter types. For example, the Buffer concept requires methods for getting the pitch or accessing the
underlying memory. With this intrusive object oriented design pattern the BufCpu or BufCudaRt classes would
have to inherit from an IBuffer interface and implement the abstract methods it declares. An example of this
basic pattern is shown in the following source snippet:

struct IBuffer
{
virtual std::size_t getPitch() const = 0;
virtual std::byte * data() = 0;
...

};

struct BufCpu : public IBuffer
{
virtual std::size_t getPitch() const override { ... }
virtual std::byte * data() override { ... }
...

};

ALPAKA_FN_HOST auto copy(
IBuffer & dst,
IBuffer const & src)

-> void
{
...

}

The compiler can then check at compile time that the objects the user wants to use as function parameters can
be implicitly cast to the interface type, which is the case for inherited base classes. The compiler returns an
error message on a type mismatch. However, if the alpaka library were using those language inherent object
oriented abstractions, the extensibility and optimizability it promises would not be possible. Classes and run-time
polymorphism require the implementer of extensions to intrusively inherit from predefined interfaces and override
special virtual functions.

This is feasible for user defined classes or types where the source code is available and where it can be changed.
The std::vector class template on the other hand would not be able to model the Buffer concept because we
can not change its definition to inherit from the IBuffer interface class since it is part of the standard library. The
standard inheritance based object orientation of C++ only works well when all the code it is to interoperate with
can be changed to implement the interfaces. It does not enable interaction with unalterable or existing code that is
too complex to change, which is the reality in the majority of software projects.

Another option to implement an extensible library is to follow the way the C++ standard library uses. It allows to
specialize function templates for user types to model concepts without altering the types themselves. For example,
the std::begin and std::end free function templates can be specialized for user defined types. With those
functions specialized, the C++11 range-based for loops (for(auto & i : userContainer){...}) see C++
Standard 6.5.4/1 can be used with user defined types. Equally specializations of std::swap and other standard
library function templates can be defined to extend those with support for user types. One Problem with function
specialization is, that only full specializations are allowed. A partial function template specialization is not allowed
by the standard. Another problem can emerge due to users carelessly overloading the template functions instead
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of specializing them. Mixing function overloading and function template specialization on the same base template
function can result in unexpected results. The reasons and effects of this are described more closely in an article
from H. Sutter (currently convener of the ISO C++ committee) called Sutter’s Mill: Why Not Specialize Function
Templates? in the C/C++ Users Journal in July 2001.

See also:

different way

The solution given in the article is to provide “a single function template that should never be specialized or
overloaded”. This function simply forwards its arguments “to a class template containing a static function with
the same signature”. This template class can fully or partially be specialized without affecting overload resolution.

The way the alpaka library implements this is by not using the C++ inherent object orientation but lifting those
abstractions to a higher level. Instead of using a non-extensible``class``/struct and abstract virtual member func-
tions for the interface, alpaka defines free functions. All those functions are templates allowing the user to call
them with arbitrary self defined types and not only those inheriting from a special interface type. Unlike mem-
ber functions, they have no implicit this pointer, so the object instance has to be explicitly given as a parameter.
Overriding the abstract virtual interface methods is replaced by the specialization of a template type that is defined
for each such function.

A concept is completely implemented by specializing the predefined template types. This allows to extend and
fine-tune the implementation non-intrusively. For example, the corresponding pitch and memory pinning template
types can be specialized for std::vector. After doing this, the std::vector can be used everywhere a buffer
is accepted as argument throughout the whole alpaka library without ever touching its definition.

A simple function allowing arbitrary tasks to be enqueued into a queue can be implemented in the way shown in
the following code. The TSfinae template parameter will be explained in a following section.

namespace alpaka
{
template<
typename TQueue,
typename TTask,
typename TSfinae = void>

struct Enqueue;

template<
typename TQueue,
typename TTask>

ALPAKA_FN_HOST auto enqueue(
TQueue & queue,
TTask & task)

-> void
{
Enqueue<
TQueue,
TTask>

::enqueue(
queue,
task);

}
}

A user who wants his queue type to be used with this enqueue function has to specialize the Enqueue template
struct. This can be either done partially by only replacing the TQueue template parameter and accepting arbitrary
tasks or by fully specializing and replacing both TQueue and TTask. This gives the user complete freedom of
choice. The example given in the following code shows this by specializing the Enqueue type for a user queue
type UserQueue and arbitrary tasks.
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struct UserQueue{};

namespace alpaka
{
// partial specialization
template<
typename TTask>

struct Enqueue<
UserQueue
TTask>

{
ALPAKA_FN_HOST static auto enqueue(
UserQueue & queue,
TTask & task)

-> void
{
//...

}
};

}

In addition the subsequent code shows a full specialization of the Enqueue type for a given UserQueue and a
UserTask.

struct UserQueue{};
struct UserTask{};

namespace alpaka
{
// full specialization
template<>
struct Enqueue<

UserQueue
UserTask>

{
ALPAKA_FN_HOST static auto enqueue(
UserQueue & queue,
UserTask & task)

-> void
{
//...

}
};

}

When the enqueue function template is called with an instance of UserQueue, the most specialized version of the
Enqueue template is selected depending on the type of the task TTask it is called with.

A type can model the queue concept completely by defining specializations for alpaka::Enqueue and
alpaka::Empty. This functionality can be accessed by the corresponding alpaka::enqueue and
alpaka::empty template functions.

Currently there is no native language support for describing and checking concepts in C++ at compile time. A
study group (SG8) is working on the ISO specification for conecpts and compiler forks implementing them do
exist. For usage in current C++ there are libraries like Boost.ConceptCheck which try to emulate requirement
checking of concept types. Those libraries often exploit the preprocessor and require non-trivial changes to the
function declaration syntax. Therefore the alpaka library does not currently make use of Boost.ConceptCheck.
Neither does it facilitate the proposed concept specification due to its dependency on non-standard compilers.
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The usage of concepts as described in the working draft would often dramatically enhance the compiler error
messages in case of violation of concept requirements. Currently the error messages are pointing deeply inside the
stack of library template invocations where the missing method or the like is called. Instead of this, with concept
checking it would directly fail at the point of invocation of the outermost template function with an expressive
error message about the parameter and its violation of the concept requirements. This would simplify especially
the work with extendable template libraries like Boost or alpaka. However, in the way concept checking would be
used in the alpaka library, omitting it does not change the semantic of the program, only the compile time error
diagnostics. In the future when the standard incorporates concept checking and the major compilers support it, it
will be added to the alpaka library.

13.2 Template Specialization Selection on Arbitrary Conditions

Basic template specialization only allows for a selection of the most specialized version where all explicitly stated
types have to be matched identically. It is not possible to enable or disable a specialization based on arbitrary
compile time expressions depending on the parameter types. To allow such conditions, alpaka adds a defaulted
and unused TSfinae template parameter to all declarations of the implementation template structs. This was
shown using the example of the Enqueue template type. The C++ technique called SFINAE, an acronym for
Substitution failure is not an error allows to disable arbitrary specializations depending on compile time conditions.
Specializations where the substitution of the parameter types by the deduced types would result in invalid code will
not result in a compile error, but will simply be omitted. An example in the context of the Enqueue template type
is shown in the following code.

struct UserQueue{};

namespace alpaka
{
template<
typename TQueue,
typename TTask>

struct Enqueue<
TQueue
TTask,
std::enable_if_t<
std::is_base_of_v_<UserQueue, TQueue>
&& (TTask::TaskId == 1u)

>>
{
ALPAKA_FN_HOST static auto enqueue(
TQueue & queue,
TTask & task)

-> void
{
//...

}
};

}

The Enqueue specialization shown here does not require any direct type match for the TQueue or the TTask
template parameter. It will be used in all contexts where TQueue has inherited from UserQueue and where the
TTask has a static const integral member value TaskId that equals one. If the TTask type does not have a TaskId
member, this code would be invalid and the substitution would fail. However, due to SFINAE, this would not result
in a compiler error but rather only in omitting this specialization. The std::enable_if template results in a
valid expression, if the condition it contains evaluates to true, and an invalid expression if it is false. Therefore it
can be used to disable specializations depending on arbitrary boolean conditions. It is utilized in the case where
the TaskId member is unequal one or the TQueue does not inherit from UserQueue. In this cirumstances, the
condition itself results in valid code but because it evaluates to false, the std::enable_if specialization results
in invalid code and the whole Enqueue template specialization gets omitted.
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13.3 Argument dependent lookup for math functions

Alpaka comes with a set of basic mathematical functions in the namespace alpaka::math. These functions are
dispatched in two ways to support user defined overloads of these functions.

Let’s take alpaka::math::abs as an example: When alpaka::math::abs(acc, value) is called, a con-
crete implementation of abs is picked via template specialization. Concretely, something similar to al-
paka::math::trait::Abs<decltype(acc), decltype(value)>{}(acc, value) is called. This allows alpaka (and the user)
to specialize the template alpaka::math::trait::Abs for various backends and various argument types. E.g. alpaka
contains specializations for float and double. If there is no specialization within alpaka (or by the user), the de-
fault implementation of alpaka::math::trait::Abs<. . . .>{}(acc, value) will just call abs(value). This is called an
unqualified call and C++ will try to find a function called abs in the namespace where the type of value is defined.
This feature is called Argument Dependent Lookup (ADL). Using ADL for types which are not covered by spe-
cializations in alpaka allows a user to bring their own implementation for which abs is meaningful, e.g. a custom
implementation of complex numbers or a fixed precision type.
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CODING GUIDELINES

Attention: The Coding Guidelines are currently revised

14.1 General

• Use the .clang-format file supplied in alpaka’s top-level directory to format your code. This will handle
indentation,

whitespace and braces automatically. Usage:

clang-format-14 -i <sourcefile>

• If you want to format the entire code base execute the following command from alpaka’s top-level directory:

find example include test -name '*.hpp' -o -name '*.cpp' | xargs clang-format-14 -i

Windows users should use Visual Studio’s native clang-format integration
<https://devblogs.microsoft.com/cppblog/clangformat-support-in-visual-studio-2017-15-7-preview-1/>.

14.2 Naming

• Types are always in PascalCase (KernelExecCuda, BufT, . . . ) and singular.

• Variables are always in camelCase (memBufHost, . . . ) and plural for collections and singular else.

• Namespaces are always in lowercase and singular is preferred.

• There are no two consecutive upper case letters (AccOpenMp, HtmlRenderer, IoHandler, . . . ). This makes
names more easily readable.

14.3 Types

• Always use integral types with known width (int32_t, uint64_t, . . . ). Never use int, unsigned long,
etc.
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14.4 Type Qualifiers

The order of type qualifiers should be: Type const * const for a const pointer to a const Type. Type const
& for a reference to a const Type.

The reason is that types can be read from right to left correctly without jumping back and forth. const Type *
const and const Type & would require jumping in either way to read them correctly.

14.5 Variables

• Variables should always be initialized on construction because this can produce hard to debug errors. This
can (nearly) always be done even in performance critical code without sacrificing speed by using a functional
programming style.

• Variables should (nearly) always be const to make the code more easy to understand. This is equivalent to
functional programming and the SSA (static single assignment) style used by LLVM. This should have no
speed implication as every half baked compiler analyses the usage of variables and reuses registers.

• Variable definitions should be differentiated from assignments by using either (...) or {...} but never
= for definitions. Use uint32_t const iUsageOfThisVariable(42); instead of uint32_t const
iUsageOfThisVariable = 42;

14.6 Comments

• Always use C++-Style comments //

• For types use //#############################################################################
to start the comment block.

• For functions use //-----------------------------------------------------------------------------
to start the comment block.

14.7 Functions

• Always use the trailing return type syntax with the return type on a new line even if the return type is void:

auto func()
-> bool

• This makes it easier to see the return type because it is on its own line.

• This leads to a consistent style for constructs where there is no alternative style (lambdas, functions templates
with dependent return types) and standard functions.

• Each function parameter is on a new indented line:

auto func(
float f1,
float f2)

-> bool
{

return true
}
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func(
1.0f,
2.0f);

• Makes it easier to see how many parameters there are and which position they have.

14.8 Templates

• Template parameters are prefixed with T to differentiate them from class or function local typedefs.

• Each template parameter is on a new indented line:

template<
typename TParam,
typename TArgs...>

auto func()
-> bool

• Makes it easier to see how many template parameters there are and which position they have.

• Always use typename for template parameters. There is NO difference to class and typename matches the
intent better.

14.9 Traits

• Trait classes always have one more template parameter (with default parameter) then is required for enabling
SFINAE in the specialization:

template<
typename T,
typename TSfinae = void>

struct GetOffsets;

• Template trait aliases always end with a T e.g. BufT while the corresponding trait ends with Type e.g.
BufType

• Traits for implementations always have the same name as the accessor function but in PascalCase while the
member function is camelCase again: sin(){...} and Sin{sin(){...}};

14.10 Includes

• The order of includes is from the most specialized header to the most general one. This order helps to find
missing includes in more specialized headers because the general ones are always included afterwards.

• A comment with the types or functions included by a include file make it easier to find out why a special
header is included.
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FIFTEEN

SPHINX

Section author: Axel Huebl, alpaka-group

In the following section we explain how to contribute to this documentation.

If you are reading the HTML version and want to improve or correct existing pages, check the “Edit on GitHub”
link on the right upper corner of each document.

Alternatively, go to docs/source in our source code and follow the directory structure of reStructuredText (.rst)
files there. For intrusive changes, like structural changes to chapters, please open an issue to discuss them before-
hand.

15.1 Build Locally

This document is build based on free open-source software, namely Sphinx, Doxygen (C++ APIs as XML), Breathe
(to include doxygen XML in Sphinx) and rst2pdf (render the cheat sheet). A web-version is hosted on ReadThe-
Docs.

The following requirements need to be installed (once) to build our documentation successfully:

cd docs/

# doxygen is not shipped via pip, install it externally,
# from the homepage, your package manager, conda, etc.
# example:
sudo apt-get install doxygen
# sudo pacman -S doxygen

# python tools & style theme
pip install -r requirements.txt # --user

With all documentation-related software successfully installed, just run the following commands to build your docs
locally. Please check your documentation build is successful and renders as you expected before opening a pull
request!

# skip this if you are still in docs/
cd docs/

# parse the C++ API documentation (default: xml format)
doxygen Doxyfile

# render the cheatsheet.pdf
rst2pdf -s cheatsheet/cheatsheet.style source/basic/cheatsheet.rst -o cheatsheet/
→˓cheatsheet.pdf

# render the '.rst' files with sphinx
(continues on next page)
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(continued from previous page)

make html

# open it, e.g. with firefox :)
firefox build/html/index.html

# now again for the pdf :)
make latexpdf

# open it, e.g. with okular
build/latex/alpaka.pdf

Hint: Run make clean to clean the build directory before executing actual make. This is necessary to reflect
changes outside the rst files.

Hint: There is a checklinks target to check links in the rst files on availability:

# check existence of links
# cd docs/
make checklinks

Hint: The Doxyfile for doxygen is configured to output in xml format per default. Another targets can be config-
ured in the Doxyfile. The final documentations are stored in docs/doxygen/.

# run in docs/doxygen/
sed -i -E 's/(GENERATE_HTML\s*=\s*)NO/\1YES/g' Doxyfile

15.2 readthedocs

To maintain or import a github project an account on ReadTheDocs is required. Further instructions can be found
on readthedocs on github and readthedocs import guide.

15.3 Useful Links

• A primer on writing reStructuredText files for sphinx

• Why You Shouldn’t Use “Markdown” for Documentation

• reStructuredText vs. Markdown

• Markdown Limitations in Sphinx
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AUTOMATIC TESTING

For automatic testing we use two different systems: GitHub Actions and GitLab CI. GitHub Actions are
used for a wide range of build tests and also some CPU runtime tests. GitLab CI allows us to run runtime tests
on GPUs and CPU architectures other than x86, like ARM or IBM POWER.

16.1 GitHub Actions

The configuration of GitHub Actions can be found in the .github/workflows/ folder. This CI uses unmod-
ified containers from Docker Hub and sets up the environment during the test job. A caching mechanism speeds
up the job times. The scripts for setting up the environment, building alpaka and running test are located in the
script/ folder.

16.1.1 clang-format

The first CI job run is clang-format, which will verify the formatting of your changeset. Only of this check passes,
will the remainder of the GitHub CI continue. In case of a formatting failure, a patch file is attached as an artifact
to the GitHub action run. You can apply this patch file to your changeset to fix the formatting.

16.2 GitLab CI

We use GitLab CI because it allows us to use self-hosted system, e.g. GPU systems. The GitHub repository is
mirrored on https://gitlab.com/hzdr/crp/alpaka . Every commit or pull request is automatically mirrored to GitLab
and triggers the CI. The configuration of the GitLab CI is stored in the file .gitlab-ci.yml. The workflow of
a GitLab CI is different from GitHub Actions. Instead of downloading an unmodified container from Docker
Hub and preparing the environment during the test job, GitLab CI uses containers which are already prepared
for the tests. The containers are built in an extra repository and contain all dependencies for alpaka. All available
containers can be found here. The scripts to build alpaka and run the tests are shared with GitHub Actions and
located at script/.

Most of the jobs for the GitLab CI are generated automatically. For more information, see the section The Job
Generator.

It is also possible to define custom jobs, see Custom jobs.
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Fig. 1: Relationship between GitHub.com, GitLab.com and HZDR gitlab-ci runners

80 Chapter 16. Automatic Testing



alpaka Documentation, Release 1.0.0-develop

16.2.1 The Container Registry

Alpaka uses containers in which as many dependencies as possible are already installed to save job execution
time. The available containers can be found here. Each container provides a tool called agc-manager to check
if a software is installed. The documentation for agc-manager can be found here. A common way to check if a
software is already installed is to use an if else statement. If a software is not installed yet, you can install it
every time at job runtime.

if agc-manager -e boost@${ALPAKA_CI_BOOST_VER} ; then
export ALPAKA_CI_BOOST_ROOT=$(agc-manager -b boost@${ALPAKA_CI_BOOST_VER})

else
# install boost

fi

This statement installs a specific boost version until the boost version is pre-installed in the container. To install a
specific software permanently in the container, please open an issue in the alpaka-group-container repository.

16.2.2 The Job Generator

Alpaka supports a large number of different compilers with different versions and build configurations. To manage
this large set of possible test cases, we use a job generator that generates the CI jobs for the different compiler and
build configuration combinations. The jobs do not cover all possible combinations, as it would be too much to run
the entire CI pipeline in a reasonable amount of time. Instead, the job generator uses pairwise testing.

The stages of the job generator are:

The job generator is located at script/job_generator/. The code is split into two parts. One part is alpaka-specific and
stored in this repository. The other part is valid for all alpaka-based projects and stored in the alpaka-job-coverage
library.

Run Job Generator Offline

First you need to install the dependencies. It is highly recommended to use a virtual environment. You can create
one for example with the venv-Python module or with miniconda. Once you have created a virtual environment,
you should activate it and install the Python packages via:

pip install -r script/job_generator/requirements.txt

After installing the Python package, you can simply run the job generator via:

# 3.0 is the version of the docker container image
# run `python ci/job_generator/job_generator.py --help` to see more options
python script/job_generator/job_generator.py 3.0

The generator creates a jobs.yaml in the current directory with all job combinations.

Filter and Reorder Jobs

The job generator provides the ability to filter and reorder the generated job matrix using Python regex. The regex
is applied via the commit message for the current commit:

Add function to filter and reorder CI jobs

This commit message demonstrates how it works. The job filter removes
all jobs whose names do not begin with NVCC or GCC. Then the jobs are
reordered. First all GCC11 are executed, then all GCC8 and then the
rest.

(continues on next page)
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(continued from previous page)

CI_FILTER: ^NVCC|^GCC
CI_REORDER: ^GCC11 ^GCC8

The job generator looks for a line starting with the prefix CI_FILTER to filter the jobs or CI_REORDER to reorder
the jobs. The filter statement is a single regex. The reorder statement can consist of multiple regex separated by
a whitespace. For reordering, the jobs have the same order as the regex. This means that all orders matching the
first regex are executed first, then the orders matching the second regex and so on. At the end, all orders that do
not match any regex are executed. Attention: the order is only guaranteed across waves. Within a wave, it is not
guaranteed which job will start first.

It is not necessary that both prefixes are used. One of them or none is also possible.

Hint: You can test your regex offline before creating and pushing a commit. The job_generator.py provides
the --filter and --reorder flags that do the same thing as the lines starting with CI_FILTER and CI_REORDER
in the commit message.

Hint: Each time the job generator runs it checks whether the container images exist. This is done by a request to
the container registry which takes a lot of time. Therefore you can skip the check with the --no-image-check
argument to speed up checking filters and reordering regex strings.

Develop new Feature for the alpaka-job-coverage Library

Sometimes one needs to implement a new function or fix a bug in the alpaka-job-coverage library while they are
implementing a new function or fixing a bug in the alpaka job generator. Affected filter rules can be recognized by
the fact that they only use parameters defined in this globals.py.

The following steps explain how to set up a development environment for the alpaka-job-coverage library and test
your changes with the alpaka job generator.

We strongly recommend using a Python virtual environment.

# if not already done, clone repositories
git clone https://github.com/alpaka-group/alpaka-job-matrix-library.git
git clone https://github.com/alpaka-group/alpaka.git

cd alpaka-job-matrix-library
# link the files from the alpaka-job-matrix-library project folder into the site-
→˓packages folder of your environment
# make the package available in the Python interpreter via `import alpaka_job_
→˓coverage`
# if you change a src file in the folder, the changes are immediately available (if␣
→˓you use a Python interpreter instance, you have to restart it)
python setup.py develop
cd ..
cd alpaka
pip install -r script/job_generator/requirements.txt

Now you can simply run the alpaka job generator. If you change the source code in the project folder alpaka-job-
matrix-library, it will be immediately available for the next generator run.
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16.2.3 Custom jobs

You can create custom jobs that are defined as a yaml file. You can add the path of the folder to the function
add_custom_jobs() in script/job_generator/custom_job.py. The function automatically read all files in
the folder, which matches a filter function and loads the GitLab CI jobs. The custom jobs are added to the same
job list as the generated jobs and distributed to the waves.
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• genindex

• search
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INDEX

A
alpaka::declareSharedVar (C++ function), 58
ALPAKA_STATIC_ACC_MEM_CONSTANT (C macro), 59
ALPAKA_STATIC_ACC_MEM_GLOBAL (C macro), 59
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